設(shè)函數(shù)的定義域為,對任意的實數(shù)都有;當時,,且.(1)判斷并證明上的單調(diào)性;
(2)若數(shù)列滿足:,且,證明:對任意的
(1)單調(diào)遞增(2),再利用.

試題分析:(1)上單調(diào)遞增,證明如下: 設(shè)任意,且,∵,∴,∴
,∴上單調(diào)遞增.  
(2)在中,令,得.令,
,∴.令,得,即

下面用數(shù)學(xué)歸納法證明:   
①當時,,不等式成立;
②假設(shè)當時,不等式成立,即,則∵上單調(diào)遞增,
,∴,即當時不等式也成立.
綜上①②,由數(shù)學(xué)歸納法原理可知對任意的,
點評:本題考查函數(shù)的單調(diào)性,考查數(shù)學(xué)歸納法的運用,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,則=(   )
A.B.   C.0  D.無法求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)
(1)若試判斷函數(shù)零點個數(shù);
(2)若對任意的,且,>0),試證明:
成立。
(3)是否存在,使同時滿足以下條件:①對任意,,且②對任意的,都有?若存在,求出的值,若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)是定義在的可導(dǎo)函數(shù),且不恒為0,記.若對定義域內(nèi)的每一個,總有,則稱為“階負函數(shù) ”;若對定義域內(nèi)的每一個,總有,則稱為“階不減函數(shù)”(為函數(shù)的導(dǎo)函數(shù)).
(1)若既是“1階負函數(shù)”,又是“1階不減函數(shù)”,求實數(shù)的取值范圍;
(2)對任給的“2階不減函數(shù)”,如果存在常數(shù),使得恒成立,試判斷是否為“2階負函數(shù)”?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
⑴解不等式;
⑵若不等式的解集為空集,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在平面直角坐標系中,橫坐標、縱坐標均為整數(shù)的點稱為整點,如果函數(shù)的圖象恰好通過個整點,則稱函數(shù)階整點函數(shù)。有下列函數(shù):
;  ②   ③     ④,
其中是一階整點函數(shù)的是(       )
A.①②③④B.①③④C.①④D.④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),設(shè)
(1)試確定的取值范圍,使得函數(shù)上為單調(diào)函數(shù);
(2)求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù).
(1)判斷函數(shù)在定義域上的單調(diào)性;
(2)利用題(1)的結(jié)論,,求使不等式上恒成立時的實數(shù)的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)在區(qū)間恰有2個零點,則的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案