下列函數(shù)中,在(0,+∞)上為減函數(shù)的是( 。
A、y=log2(x+1)
B、y=-
1
x+1
C、y=
x
D、y=(
1
2
x-1
考點:函數(shù)單調(diào)性的判斷與證明
專題:計算題,函數(shù)的性質(zhì)及應用
分析:運用常見函數(shù)的單調(diào)性,結合函數(shù)的圖象,即可得到在(0,+∞)上為減函數(shù)的函數(shù).
解答: 解:對于A.y在x>-1上遞增,則在x>0上遞增,則A錯誤;
對于B.y在x>-1上遞增,則在x>0上遞增,則B錯誤;
對于C.由冪函數(shù)的單調(diào)性可得y在x>0上遞增,則C錯誤;
對于D.函數(shù)y在R上遞減,則在x>0上遞減,則D正確.
故選D.
點評:本題考查函數(shù)的單調(diào)性的判斷,考查常見函數(shù)的單調(diào)性,考查判斷能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知全集U={0,1,2,3,4,5,6},集合A={0,1,2,3},B={3,4,5},則(∁UA)∩B=( 。
A、{3}
B、{4,5}
C、{4,5,6}
D、{0,1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某市為考核一學校的教學質(zhì)量,對該校甲、乙兩班各50人進行測驗,根據(jù)這兩班的成績繪制莖葉圖如圖所示:

(1)求甲、乙兩班成績的中位數(shù),并將甲乙兩班數(shù)據(jù)合在一起,繪出這些數(shù)據(jù)的頻率分布直方圖;
(2)根據(jù)抽樣測驗,能否認為該學!敖虒W成績不低于70分的學生至少占全體學生的80%”?
(3)根據(jù)莖葉圖,分析甲、乙兩班成績的特點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
x+3,x<1
-x+6,x≥1
的最大值是( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知-1≤x≤0,求函數(shù)y=2x+2-3.4x的最大值和最小值,并求出取得最值時對應的自變量的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=2 -(m-x)2的最大值為m,則函數(shù)f(x)的單調(diào)增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圖中所示的四個圖形中正確的是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若某幾何體的三視圖如圖所示,則這個幾何體的體積為( 。
A、
2
3
3
B、
2
C、
4
3
3
D、
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l⊥平面α,直線m?平面β,有下列四個命題:
①若α∥β,則l⊥m;
②若α⊥β,則l∥m;
③若l∥m,則α⊥β;
④若l⊥m,則α∥β.
以上命題中,正確命題的序號是(  )
A、①②B、①③C、②④D、③④

查看答案和解析>>

同步練習冊答案