【題目】設(shè)函數(shù),若對(duì)于任意,恒成立,則的取值范圍是__________

【答案】

【解析】

由題意得出對(duì)于任意,,轉(zhuǎn)化為不等式組對(duì)任意的恒成立,分析二次函數(shù)在區(qū)間上的單調(diào)性,轉(zhuǎn)化為關(guān)于函數(shù)最值的不等式來(lái)求解,從而可得出實(shí)數(shù)的取值范圍.

由題意得出對(duì)于任意,

則不等式組對(duì)任意的恒成立.

先考查二次不等式對(duì)任意的恒成立.

構(gòu)造函數(shù),該二次函數(shù)圖象開(kāi)口向上,對(duì)稱(chēng)軸為直線.

因?yàn)?/span>恒成立,所以,此時(shí),函數(shù)在區(qū)間上單調(diào)遞增,則,解得;

下面來(lái)考查不等式對(duì)任意的恒成立,則.

構(gòu)造函數(shù).

①當(dāng)時(shí),即當(dāng).

,則,當(dāng)時(shí),,不合乎題意;

,則,合乎題意;

②當(dāng)時(shí),即當(dāng)時(shí),二次函數(shù)的圖象開(kāi)口向下,對(duì)稱(chēng)軸為直線.

當(dāng)時(shí),即當(dāng)時(shí),函數(shù)上單調(diào)遞減,則,解得,此時(shí),;

當(dāng)時(shí),即當(dāng)時(shí),,解得,此時(shí),.

由上可知,當(dāng)時(shí),不等式對(duì)任意的恒成立.

綜上所述,當(dāng)時(shí),不等式對(duì)任意的恒成立.

因此,實(shí)數(shù)的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)當(dāng)a=1時(shí),求:①函數(shù)在點(diǎn)P(1,)處的切線方程;②函數(shù)的單調(diào)區(qū)間和極值;

(2)若不等式恒成立,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)命題:實(shí)數(shù)滿(mǎn)足,其中,命題:實(shí)數(shù)滿(mǎn)足.

(1),且為真,求實(shí)數(shù)的取值范圍;

(2)若的充分不必要條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+bx+c,其圖象與y軸的交點(diǎn)為(0,1),且滿(mǎn)足f(1﹣x)=f(1+x).

(1)求f(x);

(2)設(shè) ,m0,求函數(shù)g(x)在[0,m]上的最大值;

(3)設(shè)h(x)=lnf(x),若對(duì)于一切x∈[0,1],不等式h(x+1﹣t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是圓 上任意一點(diǎn),點(diǎn)與圓心關(guān)于原點(diǎn)對(duì)稱(chēng).線段的中垂線與交于點(diǎn).

(1)求動(dòng)點(diǎn)的軌跡方程

(2)設(shè)點(diǎn),若直線軸且與曲線交于另一點(diǎn),直線與直線交于點(diǎn),證明:點(diǎn)恒在曲線上,并求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓 的離心率為,兩條準(zhǔn)線之間的距離為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知橢圓的左頂點(diǎn)為,點(diǎn)在圓上,直線與橢圓相交于另一點(diǎn),且的面積是的面積的倍,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列所給4個(gè)圖象中,與所給3件事吻合最好的順序?yàn)?( )

我離開(kāi)學(xué)校不久,發(fā)現(xiàn)自己把作業(yè)本忘在教室,于是立刻返回教室里取了作業(yè)本再回家;

我放學(xué)回家騎著車(chē)一路以常速行駛,只是在途中遇到一次交通堵塞,耽擱了一些時(shí)間;

我放學(xué)從學(xué)校出發(fā)后,心情輕松,緩緩行進(jìn),后來(lái)為了趕時(shí)間開(kāi)始加速.

A.(1)(2)(4)B.(4)(1)(2)C.(4)(1)(3)D.(4)(2)(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】李明自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營(yíng)一家水果店,銷(xiāo)售的水果中有草莓、京白梨、西瓜、桃,價(jià)格依次為60/盒、65/盒、80/盒、90/盒.為增加銷(xiāo)量,李明對(duì)這四種水果進(jìn)行促銷(xiāo):一次購(gòu)買(mǎi)水果的總價(jià)達(dá)到120元,顧客就少付x元.每筆訂單顧客網(wǎng)上支付成功后,李明會(huì)得到支付款的80%

①當(dāng)x=10時(shí),顧客一次購(gòu)買(mǎi)草莓和西瓜各1盒,需要支付__________元;

②在促銷(xiāo)活動(dòng)中,為保證李明每筆訂單得到的金額均不低于促銷(xiāo)前總價(jià)的七折,則x的最大值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

(1)當(dāng)時(shí),解不等式:;

(2)當(dāng)時(shí),存在最小值,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案