已知直三棱柱ABC-A′B′C′的各頂點(diǎn)都在同一球面,AB=2,AC=AA′=3,BC=4,求該球的體積.
考點(diǎn):棱柱、棱錐、棱臺的體積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:通過已知條件求出底面外接圓的半徑,確定球心為O的位置,求出球的半徑,然后求出球的體積.
解答: 解:在△ABC中,AB=2,AC=3,BC=4,可得△ABC外接圓半徑r=
8
15
,
設(shè)此圓圓心為O',球心為O,在RT△OAO'中,
得球半徑R=
9
4
+
64
15
=
391
60
,
故此球的體積為
4
3
πR3=
391
1350
5865
π.
點(diǎn)評:本題是中檔題,解題思路是:先求底面外接圓的半徑,再利用勾股定理,求出球的半徑.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將正方體(如圖)截去兩個(gè)三棱錐,得到如圖所示的幾何體,則該幾何體的主視圖為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足(2a+c)cosB+bcosC=0.
(1)求角B的值;
(2)設(shè)
m
=(sinA,cosA),
n
=(1,
3
),當(dāng)
m
n
取到最大值時(shí),求角A、角C的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了研究玉米品種對產(chǎn)量的影響,某農(nóng)科院對一塊試驗(yàn)田種植的一批玉米共10000株的生長情況進(jìn)行研究,現(xiàn)采用分層抽樣方法抽取50株為樣本,統(tǒng)計(jì)結(jié)果如表:
高莖矮莖合計(jì)
圓粒111930
皺粒13720
合計(jì)242650
(1)現(xiàn)采用分層抽樣方法,從這個(gè)樣本中取出10株玉米,再從這10株玉米中隨機(jī)選出3株,求選到的3株之中既有圓粒玉米又有皺粒玉米的概率;
(2)根據(jù)對玉米生長情況作出的統(tǒng)計(jì),是否能在犯錯(cuò)誤的概率不超過0.050的前提下認(rèn)為玉米的圓粒與玉米的高莖有關(guān)?(下面的臨界值表和公式可供參考):
P(K2≥k)0.150.100.0500.0250.0100.001
k2.0722.7063.8415.0246.63510.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d為樣本容量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

哈三中高二某班為了對即將上市的班刊進(jìn)行合理定價(jià),將對班刊按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):
單價(jià)x(元)88.28.48.68.89
銷量y(元)908483807568
(Ⅰ)求回歸直線方程
y
=bx+a;(其中b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
,a=
.
y
-b
.
x

(Ⅱ)預(yù)計(jì)今后的銷售中,銷量與單價(jià)服從(Ⅰ)中的關(guān)系,且班刊的成本是4元/件,為了獲得最大利潤,班刊的單價(jià)定為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
|x+1|+|x-2|+a

(1)當(dāng)a=-5時(shí),求函數(shù)f(x)的定義域;
(2)若存在正數(shù)a使函數(shù)f(x)的最小值為2且正數(shù)m,n滿足m+2n=a,試求m2+n2最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,異面直線A1B與AC所成的角是
 
°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
x=3-
2
2
t
y=
5
+
2
2
t
(t為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的單位長度,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=2
5
sinθ.
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線l交于A,B兩點(diǎn),若點(diǎn)P坐標(biāo)為(3,
5
),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cosx(cosx+
3
sinx)+a(x∈R,a∈R,a是常數(shù)).
(Ⅰ)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若x∈[0,
π
2
]時(shí),函數(shù)f(x)的最大值為4,求a的值.

查看答案和解析>>

同步練習(xí)冊答案