已知定義域?yàn)镽的函數(shù)f(x)滿足f(f(x)-x2+x)=f(x)-x2+x.
(Ⅰ)若f(2)=3,求f(1);又若f(0)=a,求f(a);
(Ⅱ)設(shè)有且僅有一個(gè)實(shí)數(shù)x0,使得f(x)= x0,求函數(shù)f(x)的解析表達(dá)式.

解:(Ⅰ)因?yàn)閷?duì)任意x∈R,有f(f(x)-x2 + x)=f(x)- x2 +x,
所以f(f(2)- 22+2)=f(2)-22+2.
又由f(2)=3,得f(3-22+2)-3-22+2,即f(1)=1.
若f(0)=a,則f(a-02+0)=a-02+0,即f(a)=a.
(Ⅱ)因?yàn)閷?duì)任意x∈R,有f(f(x))-x2 +x)=f(x)-x2 +x.
又因?yàn)橛星抑挥幸粋(gè)實(shí)數(shù)x0,使得f(x0)- x0.所以對(duì)任意xεR,有f(x)-x2 +x= x0.
在上式中令x= x0,有f(x0)-x + x0= x0,
又因?yàn)閒(x0)- x0,所以x0-x=0,故x0=0或x0=1.
若x0=0,則f(x)- x2 +x=0,即f(x)= x2-x.
但方程x2-x=x有兩上不同實(shí)根,與題設(shè)條件矛質(zhì),故x2≠0.
若x2=1,則有f(x)-x2 +x=1,即f(x)= x2-x+1.易驗(yàn)證該函數(shù)滿足題設(shè)條件.
綜上,所求函數(shù)為f(x)= x2-x+1(xR)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),為實(shí)數(shù).
(1)當(dāng)時(shí),判斷函數(shù)的奇偶性,并說明理由;
(2)當(dāng)時(shí),指出函數(shù)的單調(diào)區(qū)間(不要過程);
(3)是否存在實(shí)數(shù),使得在閉區(qū)間上的最大值為2.若存在,求出的值;若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/82/b/1vw273.gif" style="vertical-align:middle;" />的函數(shù)是奇函數(shù).
(1)求的值
(2)判斷函數(shù)的單調(diào)性
(3)若對(duì)任意的,不等式恒成立,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某企業(yè)生產(chǎn)一種產(chǎn)品時(shí),固定成本為5 000元,而每生產(chǎn)100臺(tái)產(chǎn)品時(shí)直接消耗成本要增加2500元,市場對(duì)此商品年需求量為500臺(tái),銷售的收入函數(shù)為(萬元)(0≤≤5),其中是產(chǎn)品售出的數(shù)量(單位:百臺(tái))
(1)把利潤表示為年產(chǎn)量的函數(shù);(2)年產(chǎn)量多少時(shí),企業(yè)所得的利潤最大;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

證明函數(shù)=在區(qū)間上是減函數(shù). (14分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b6/7/bzoo5.gif" style="vertical-align:middle;" />的函數(shù)滿足.
(1)若,求;又若,求;
(2)設(shè)有且僅有一個(gè)實(shí)數(shù),使得,求函數(shù)的解析表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題13分)已知函數(shù)的圖象相交于,,分別是的圖象在兩點(diǎn)的切線,分別是軸的交點(diǎn).
(1)求的取值范圍;
(2)設(shè)為點(diǎn)的橫坐標(biāo),當(dāng)時(shí),寫出為自變量的函數(shù)式,并求其定義域和值域;
(3)試比較的大小,并說明理由(是坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知二次函數(shù)圖象以原點(diǎn)為頂點(diǎn)且過點(diǎn)(1,1),反比例函數(shù)的圖象與直線的兩個(gè)交點(diǎn)間的距離為8,
(1)求函數(shù)的表達(dá)式;
(2)證明:當(dāng)時(shí),關(guān)于的方程有三個(gè)實(shí)數(shù)解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=3x,且f(a+2)=18,g(x)=3ax-4x的定義域?yàn)閰^(qū)間[-1,1].
(1)求g(x)的解析式;
(2)判斷g(x)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊(cè)答案