【題目】如圖,已知斜三棱柱ABC﹣A1B1C1中,底面ABC是等邊三角形,側(cè)面BB1C1C是菱形,∠B1BC=60°.
(1)求證:BC⊥AB1;
(2)若AB=2,AB1= ,求二面角C﹣AB1﹣C1(銳角)的余弦值.
【答案】
(1)證明:∵四邊形BB1C1C是菱形,∠CBB1=60°,
∴△BB1C是等邊三角形,
取BC的中點(diǎn)為O,連結(jié)OA,OB,則BC⊥OB1,
又∵△ABC是等邊三角形,∴BC⊥OA,
∵OA∩OB1,∴BC⊥平面AOB1,
∵AB1平面AOB1,∴BC⊥AB1.
(2)解:∵△ABC和△BB1C是全等的等邊三角形,AB=2,
∴OA=OB1= ,
又∵AB1= ,∴ ,∴OB1⊥OA,
又∵OB1⊥BC,∴OB1⊥平面ABC,
分別以O(shè)A,OB,OB1所在的直線(xiàn)作為x,y,z軸,建立空間直角坐標(biāo)系,
則A( ),B(0,1,0),C(0,﹣1,0),
=(0,﹣1,﹣ ), =(﹣ ), =(0,﹣2,0), =(﹣ ,﹣1,0),
設(shè) =(x,y,z)是平面C1AB1的一個(gè)法向量,
則 ,取x=1,得 =(1,0,1),
設(shè) =(a,b,c)是平面CAB1的一個(gè)法向量,
則 ,取a=1,得 =(1,﹣ ,1),
cos< >= = = ,
∴二面角C﹣AB1﹣C1(銳角)的余弦值為 .
【解析】(1)推導(dǎo)出△BB1C是等邊三角形,取BC的中點(diǎn)為O,則BC⊥OB1 , 由△ABC是等邊三角形,得BC⊥OA,從而B(niǎo)C⊥平面AOB1 , 由此能證明BC⊥AB1 . (2)分別以O(shè)A,OB,OB1所在的直線(xiàn)作為x,y,z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角C﹣AB1﹣C1(銳角)的余弦值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解空間中直線(xiàn)與直線(xiàn)之間的位置關(guān)系的相關(guān)知識(shí),掌握相交直線(xiàn):同一平面內(nèi),有且只有一個(gè)公共點(diǎn);平行直線(xiàn):同一平面內(nèi),沒(méi)有公共點(diǎn);異面直線(xiàn): 不同在任何一個(gè)平面內(nèi),沒(méi)有公共點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是導(dǎo)數(shù)y=f′(x)的圖象,則函數(shù)y=f(x)的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的半焦距為,左焦點(diǎn)為,右頂點(diǎn)為,拋物線(xiàn)與橢圓交于兩點(diǎn),若四邊形是菱形,則橢圓的離心率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著我國(guó)經(jīng)濟(jì)的發(fā)展,居民的儲(chǔ)蓄存款逐年增長(zhǎng).設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲(chǔ)蓄存款(年底余額)如下表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 |
時(shí)間代號(hào) | 1 | 2 | 3 | 4 | 5 |
儲(chǔ)蓄存款 (千億元) | 6 | 7 | 8 | 9 | 10 |
(1)求關(guān)于的回歸方程;
(2)用所求回歸方程預(yù)測(cè)該地區(qū)2015年的人民幣儲(chǔ)蓄存款.
附:回歸方程中, ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示,在等腰梯形中, .把沿折起,使得,得到四棱錐.如圖2所示.
(1)求證:面面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高中學(xué)校在2015年的一次體能測(cè)試中,規(guī)定所有男生必須依次參加50米跑、立定跳遠(yuǎn)和一分鐘的引體向上三項(xiàng)測(cè)試,只有三項(xiàng)測(cè)試全部達(dá)標(biāo)才算合格,已知男生甲的50米跑和立定跳遠(yuǎn)的測(cè)試與男生乙的50米跑測(cè)試已達(dá)標(biāo),男生甲還需要參加一分鐘的引體向上測(cè)試,男生乙還需要參加立定跳遠(yuǎn)和一分鐘引體向上兩項(xiàng)測(cè)試,若甲參加一分鐘引體向上測(cè)試達(dá)標(biāo)的概率為p,乙參加立定跳遠(yuǎn)和一分鐘引體向上的測(cè)試達(dá)標(biāo)的概率均為 ,甲乙每一項(xiàng)測(cè)試是否達(dá)標(biāo)互不影響,已知甲和乙同時(shí)合格的概率為 .
(1)求p的值,并計(jì)算甲和乙恰有一人合格的概率;
(2)在三項(xiàng)測(cè)試項(xiàng)目中,設(shè)甲達(dá)標(biāo)的測(cè)試項(xiàng)目項(xiàng)數(shù)為x,乙達(dá)標(biāo)的測(cè)試項(xiàng)目項(xiàng)數(shù)為y,記ξ=x+y,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】規(guī)定記號(hào)“*”表示一種運(yùn)算,a*b=a2+ab,設(shè)函數(shù)f(x)=x*2,且關(guān)于x的方程f(x)=ln|x+1|(x≠﹣1)恰有4個(gè)互不相等的實(shí)數(shù)根x1 , x2 , x3 , x4 , 則x1+x2+x3+x4= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=是奇函數(shù),g(x)=log2(2x+1)-bx是偶函數(shù).
(1)求a-b;
(2)若對(duì)任意的t∈[-1,2],不等式f(t2-2t-1)+f(2t2-k)<0恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: + =1(0<b<3)的左右焦點(diǎn)分別為E,F(xiàn),過(guò)點(diǎn)F作直線(xiàn)交橢圓C于A,B兩點(diǎn),若 且
(1)求橢圓C的方程;
(2)已知點(diǎn)O為原點(diǎn),圓D:(x﹣3)2+y2=r2(r>0)與橢圓C交于M,N兩點(diǎn),點(diǎn)P為橢圓C上一動(dòng)點(diǎn),若直線(xiàn)PM,PN與x軸分別交于點(diǎn)R,S,求證:|OR||OS|為常數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com