如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)面PAD⊥底面ABCD,且PA=PD=數(shù)學(xué)公式AD=2,E、F分別為PC、BD的中點(diǎn).
(Ⅰ) 求證:EF∥平面PAD;
(Ⅱ) 求三棱錐P-BCD的體積;
(Ⅲ) 在線段AB上是否存在點(diǎn)G,使得CD⊥平面EFG?說(shuō)明理由.

(Ⅰ)證明:連接AC交BD于F,
∵ABCD為正方形,∴F為AC中點(diǎn),
∵E為PC中點(diǎn).
∴在△CPA中,EF∥AP.
又PA?平面PAD,EF?平面PAD,
∴EF∥平面PAD;
(Ⅱ)解:如圖,取AD的中點(diǎn)O,連接OP.
∵PA=AD,∴PO⊥AD.
∵側(cè)面PAD⊥底面ABCD,側(cè)面PAD∩底面ABCD=AD,
∴PO⊥平面ABCD.
又且PA=PD=AD=2,∴△PAD是等腰直角三角形,
且AD=,PO=
在正方形 ABCD中,=4.
=
(3)存在點(diǎn)G滿足條件,證明如下:
設(shè)點(diǎn)G為AB中點(diǎn),連接EG、FG.
由F為BD的中點(diǎn),∴FG∥AD,
由(I)得EF∥PA,且FG∩EF=F,AD∩PA=A,
∴平面EFG∥平面PAD.
∵側(cè)面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,AD⊥CD,
∴CD⊥平面PAD.
∴CD⊥平面EFG.
所以AB的中點(diǎn)G為滿足條件的點(diǎn).
分析:(I)連接AC交BD于F,利用三角形的中位線定理即可得到EF∥AP,再利用線面平行的判定定理即可證明;
(II)取AD的中點(diǎn)O,連接OP.由等腰三角形的性質(zhì)可得PO⊥AD,再利用面面垂直的性質(zhì)可得PO⊥底面ABCD,計(jì)算出三角形BCD的面積,利用三棱錐的體積計(jì)算公式即可得出;
(III)設(shè)點(diǎn)G為AB中點(diǎn)滿足條件,利用三角形的中位線定理可證明FG∥AD,再利用(I)的結(jié)論和面面平行的判定定理即可證明平面EFG∥平面PAD.利用面面垂直的性質(zhì)可證明CD⊥平面PAD.
再利用面面平行的性質(zhì)定理即可得到結(jié)論.
點(diǎn)評(píng):熟練掌握三角形的中位線定理、線面平行的判定定理、等腰三角形的性質(zhì)、面面垂直的性質(zhì)、三棱錐的體積計(jì)算公式、面面平行的判定和性質(zhì)定理、面面垂直的性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明AD⊥PB;
(2)求二面角P-BD-A的正切值大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點(diǎn)A在PD上的射影為點(diǎn)G,點(diǎn)E在AB上,平面PEC⊥平面PDC.
(1)求證:AG∥平面PEC;
(2)求AE的長(zhǎng);
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求證:平面PBD⊥平面PAC.
(Ⅱ)求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長(zhǎng)為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點(diǎn)
(1)求證;平面ACE⊥面ABCD;
(2)求三棱錐P-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•武漢模擬)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案