已知函數(shù)f(x)=|x+
1
x
|,定義在R上的函數(shù)g(x)=log2(x2-4x+m),若?x1∈R,?x2∈R,使得f(x1)>g(x2),求實(shí)數(shù)m的取值范圍.
考點(diǎn):函數(shù)恒成立問題
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知得f(x)min>g(x2),由f(x)=|x+
1
x
|=|x|+
1
|x|
≥2
|x|•
1
|x|
=2,得f(x)min=2,由g(x)=log2(x2-4x+m)=log2[(x-2)2+m-4]≥log2(m-4),得log2(m-4)<2=log24,由此能求出實(shí)數(shù)m的取值范圍.
解答: 解:∵?x1∈R,?x2∈R,使得f(x1)>g(x2),
∴f(x)min>g(x2),
∵f(x)=|x+
1
x
|=|x|+
1
|x|
≥2
|x|•
1
|x|
=2,
∴當(dāng)且僅當(dāng)|x|=
1
|x|
時(shí),即x=±1時(shí),f(x)min=2,
∵g(x)=log2(x2-4x+m)=log2[(x-2)2+m-4]≥log2(m-4),
∴l(xiāng)og2(m-4)<2=log24,
m-4>0
m-4<4

解得4<m<8.
∴實(shí)數(shù)m的取值范圍是(4,8).
點(diǎn)評(píng):本題考查實(shí)數(shù)的取值范圍的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x∈R|x2-(a+2)x+a2=0},B={x∈R|x2+bx=0},若A∪B={0,2,3},(∁RA)∩B={3},求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|(x-1)(x-4)<0},B={x|y=
2-x
},則A∩B=( 。
A、(-∞,2]
B、(1,2)
C、(1,2]
D、(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)y=f(x),對(duì)任意a,b∈R,滿足f(a+b)=f(a)•f(b),當(dāng)x>0時(shí),有f(x)>1,其中f(1)=2.
(1)求f(0),f(-1)的值;
(2)證明:y=f(x)在(0,+∞)上是增函數(shù);
(3)求不等式f(x+1)<4的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
1
2
(ax2-ax+
1
a
)的定義域?yàn)镽,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M是所有同時(shí)滿足下列兩個(gè)性質(zhì)的函數(shù)f(x)的集合:
①函數(shù)f(x)在其定義域上是單調(diào)函數(shù);
②在函數(shù)f(x)的定義域內(nèi)存在閉區(qū)間[a,b]使得f(x)在[a,b]上的最小值是a,最大值是b.請(qǐng)解答以下問題
(1)判斷函數(shù)g(x)=-x2(x∈[0,+∞))是否屬于集合M?若是,請(qǐng)求出相應(yīng)的區(qū)間[a,b];若不是,請(qǐng)說明理由.
(2)證明函數(shù)f(x)=3log2x屬于集合M;
(3)若函數(shù)f(x)=
mx
1+|x|
屬于集合M,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn,首項(xiàng)為a1,且Sn=an2-an+1(n∈N+),若實(shí)數(shù)x,y滿足
x-y+1≥0
x+y≥0
x≤a1
則z=x+2y的最大值是               ( 。
A、-1
B、
1
2
C、5
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A={y|y=x2-2x-3,x∈[0,3]},B={x|x>m},且A⊆B,則m的范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點(diǎn)分別是F1和F2,離心率e=
2
2
,且a2=2c.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)F1的直線l與該橢圓相交于M、N兩點(diǎn),且|
F2M
+
F2N
|=
2
26
3
,求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案