【題目】某商店計(jì)劃每天購(gòu)進(jìn)某商品若干件,商店每銷售一件該商品可獲利潤(rùn)60元,若供大于求,剩余商品全部退回,但每件商品虧損10元;若供不應(yīng)求,則從外部調(diào)劑,此時(shí)每件調(diào)劑商品可獲利40.

1)若商品一天購(gòu)進(jìn)該商品10件,求當(dāng)天的利潤(rùn)(單位:元)關(guān)于當(dāng)天需求量(單位:件,)的函數(shù)解析式;

2)商店記錄了50天該商品的日需求量(單位:件,),整理得下表:

若商店一天購(gòu)進(jìn)10件該商品,以50天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤(rùn)在區(qū)間內(nèi)的概率.

【答案】(1) (2)

【解析】

1)根據(jù)題意分兩段,求分段函數(shù);

2)根據(jù)表格計(jì)算不同的日需求量對(duì)應(yīng)的利潤(rùn),并且計(jì)算利潤(rùn)在時(shí),對(duì)應(yīng)的頻數(shù),并計(jì)算頻率,就是所求概率.

解:(1)當(dāng)日需求量時(shí),利潤(rùn)為

當(dāng)日需求量時(shí),利潤(rùn)為.

所以利潤(rùn)關(guān)于需求量的函數(shù)解析式為

.

250天內(nèi)有4天獲得的利潤(rùn)為390元,有8天獲得的利潤(rùn)為460元,有10天獲得的利潤(rùn)為530元,有14天獲得的利潤(rùn)為600元,有9天獲得的利潤(rùn)為640元,有5天獲得的利潤(rùn)為680. 若利潤(rùn)在區(qū)間內(nèi),日需求量為9、1011,其對(duì)應(yīng)的頻數(shù)分別為10、14、9. 則利潤(rùn)在區(qū)間內(nèi)的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若方程有四個(gè)不等的實(shí)數(shù)根,則的取值范圍是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】11月,2019全國(guó)美麗鄉(xiāng)村籃球大賽在中國(guó)農(nóng)村改革的發(fā)源地-安徽鳳陽舉辦,其間甲、乙兩人輪流進(jìn)行籃球定點(diǎn)投籃比賽(每人各投一次為一輪),在相同的條件下,每輪甲乙兩人在同一位置,甲先投,每人投一次球,兩人有1人命中,命中者得1分,未命中者得-1分;兩人都命中或都未命中,兩人均得0分,設(shè)甲每次投球命中的概率為,乙每次投球命中的概率為,且各次投球互不影響.

1)經(jīng)過1輪投球,記甲的得分為,求的分布列;

2)若經(jīng)過輪投球,用表示經(jīng)過第輪投球,累計(jì)得分,甲的得分高于乙的得分的概率.

①求;

②規(guī)定,經(jīng)過計(jì)算機(jī)計(jì)算可估計(jì)得,請(qǐng)根據(jù)①中的值分別寫出a,c關(guān)于b的表達(dá)式,并由此求出數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)若,且存在單調(diào)遞減區(qū)間,求實(shí)數(shù)的取值范圍;

(2)設(shè)函數(shù)的圖象與函數(shù)的圖象交于點(diǎn), ,過線段的中點(diǎn)作軸的垂線分別交, 于點(diǎn), ,證明: 在點(diǎn)處的切線與在點(diǎn)處的切線不平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的半焦距為,圓與橢圓有且僅有兩個(gè)公共點(diǎn),直線與橢圓只有一個(gè)公共點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)已知?jiǎng)又本過橢圓的左焦點(diǎn),且與橢圓分別交于兩點(diǎn),試問:軸上是否存在定點(diǎn),使得為定值?若存在,求出該定值和點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國(guó)古代十進(jìn)制的算籌計(jì)數(shù)法,在數(shù)學(xué)史上是一個(gè)偉大的創(chuàng)造,算籌實(shí)際上是一根根同長(zhǎng)短的小木棍.如圖,是利用算籌表示1-9的一種方法.則據(jù)此,3可表示為“”,26可表示為“”,現(xiàn)有6根算籌,據(jù)此表示方法,若算籌不能剩余,則可以用1-99數(shù)字表示的兩位數(shù)的個(gè)數(shù)為(

A.9B.13C.16D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形PABC中,AB2BC4,DPC的中點(diǎn),以AD為折痕將PAD折起,折到如圖2的位置,使得PB2

1)求證:AP⊥平面PBD

2)求平面PCD與平面PBC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)),是自然對(duì)數(shù)的底數(shù).

(1)當(dāng)時(shí),求的單調(diào)增區(qū)間;

(2)若對(duì)任意的),求的最大值;

(3)若的極大值為,求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)a(x1)lnx(aR),g(x)(1x)ex.

1)討論函數(shù)f(x)的單調(diào)性;

2)若對(duì)任意給定的x0[1,1],在區(qū)間(0,e]上總存在兩個(gè)不同的xi(i12),使得f(xi)g(x0)成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案