設(shè)定義域?yàn)椋?,+∞)的單調(diào)函數(shù)f(x),對任意的x∈(0,+∞),都有f[f(x)-log2x]=6,若x0是方程f(x)-f′(x)=4的一個(gè)解,且x0∈(a,a+1)(a∈N*),則a=________.

1
分析:由題意可得f(x)-log2x為定值,設(shè)為t,代入可得t=4,進(jìn)而可得函數(shù)的解析式,化方程有解為函數(shù)F(x)=f(x)-f′(x)-4=log2x-有零點(diǎn),易得F(1)<0,F(xiàn)(2)>0,由零點(diǎn)的判定可得答案.
解答:根據(jù)題意,對任意的x∈(0,+∞),都有f[f(x)-log2x]=6,
又由f(x)是定義在(0,+∞)上的單調(diào)函數(shù),
則f(x)-log2x為定值,
設(shè)t=f(x)-log2x,則f(x)=t+log2x,
又由f(t)=6,可得t+log2t=6,
可解得t=4,故f(x)=4+log2x,f′(x)=,
又x0是方程f(x)-f′(x)=4的一個(gè)解,
所以x0是函數(shù)F(x)=f(x)-f′(x)-4=log2x-的零點(diǎn),
分析易得F(1)=-<0,F(xiàn)(2)=1-=1->0,
故函數(shù)F(x)的零點(diǎn)介于(1,2)之間,故a=1,
故答案為:1
點(diǎn)評(píng):本題考查函數(shù)的零點(diǎn)的判斷,涉及導(dǎo)數(shù)的運(yùn)算和性質(zhì),屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•杭州二模)設(shè)定義域?yàn)椋?,+∞)的單調(diào)函數(shù)f(x),對任意的x∈(0,+∞),都有f[f(x)-log2x]=6,若x0是方程f(x)-f′(x)=4的一個(gè)解,且x0∈(a,a+1)(a∈N*),則a=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義域?yàn)椋?,+∞)的單調(diào)函數(shù)f(x),若對任意的x∈(0,+∞),都有f(f(x)+log
1
2
x)=6
,則方程f(x)=2x解的個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省杭州市建德市新安江中學(xué)高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

設(shè)定義域?yàn)椋?,+∞)的單調(diào)函數(shù)f(x),對任意的x∈(0,+∞),都有f[f(x)-log2x]=6,若x是方程f(x)-f′(x)=4的一個(gè)解,且x∈(a,a+1)(a∈N*),則a=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省臺(tái)州市高一(上)期末數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)定義域?yàn)椋?,+∞)的單調(diào)函數(shù)f(x),若對任意的x∈(0,+∞),都有,則方程f(x)=2x解的個(gè)數(shù)是( )
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:杭州二模 題型:填空題

設(shè)定義域?yàn)椋?,+∞)的單調(diào)函數(shù)f(x),對任意的x∈(0,+∞),都有f[f(x)-log2x]=6,若x0是方程f(x)-f′(x)=4的一個(gè)解,且x0∈(a,a+1)(a∈N*),則a=______.

查看答案和解析>>

同步練習(xí)冊答案