【題目】某商場(chǎng)營銷人員進(jìn)行某商品的市場(chǎng)營銷調(diào)查時(shí)發(fā)現(xiàn),每回饋消費(fèi)者一定的點(diǎn)數(shù),該商品每天的銷量就會(huì)發(fā)生一定的變化,經(jīng)過試點(diǎn)統(tǒng)計(jì)得到以下表:

反饋點(diǎn)數(shù)t

1

2

3

4

5

銷量(百件)/天

0.5

0.6

1

1.4

1.7

(Ⅰ)經(jīng)分析發(fā)現(xiàn),可用線性回歸模型擬合當(dāng)?shù)卦撋唐蜂N量(千件)與返還點(diǎn)數(shù)之間的相關(guān)關(guān)系.試預(yù)測(cè)若返回6個(gè)點(diǎn)時(shí)該商品每天的銷量;

(Ⅱ)若節(jié)日期間營銷部對(duì)商品進(jìn)行新一輪調(diào)整.已知某地?cái)M購買該商品的消費(fèi)群體十分龐大,經(jīng)營銷調(diào)研機(jī)構(gòu)對(duì)其中的200名消費(fèi)者的返點(diǎn)數(shù)額的心理預(yù)期值進(jìn)行了一個(gè)抽樣調(diào)查,得到如下一份頻數(shù)表:

返還點(diǎn)數(shù)預(yù)期值區(qū)間

(百分比)

[1,3)

[3,5)

[5,7)

[7,9)

[9,11)

[11,13)

頻數(shù)

20

60

60

30

20

10

(1)求這200位擬購買該商品的消費(fèi)者對(duì)返點(diǎn)點(diǎn)數(shù)的心理預(yù)期值的樣本平均數(shù)及中位數(shù)的估計(jì)值(同一區(qū)間的預(yù)期值可用該區(qū)間的中點(diǎn)值代替;估計(jì)值精確到0.1);

(2)將對(duì)返點(diǎn)點(diǎn)數(shù)的心理預(yù)期值在的消費(fèi)者分別定義為“欲望緊縮型”消費(fèi)者和“欲望膨脹型”消費(fèi)者,現(xiàn)采用分層抽樣的方法從位于這兩個(gè)區(qū)間的30名消費(fèi)者中隨機(jī)抽取6名,再從這6人中隨機(jī)抽取3名進(jìn)行跟蹤調(diào)查,設(shè)抽出的3人中 “欲望緊縮型”消費(fèi)者的人數(shù)為隨機(jī)變量,求的分布列及數(shù)學(xué)期望.

【答案】(Ⅰ)返回6個(gè)點(diǎn)時(shí)該商品每天銷量約為2百件;(Ⅱ)(1)均值的估計(jì)值為6, 中位數(shù)的估計(jì)值為5.7;(2)詳見解析.

【解析】

(Ⅰ)先由題中數(shù)據(jù)得到,根據(jù)回歸直線必過樣本中心,將代入,即可求出結(jié)果;

(Ⅱ)(1)根據(jù)頻數(shù)表中數(shù)據(jù),每組的中間值乘以該組的頻率,再求和,即可得出平均值;根據(jù)中位數(shù)兩側(cè)的頻率之和均為0.5,即可求出結(jié)果;

(2)先求出抽取6名消費(fèi)者中“欲望緊縮型”消費(fèi)者人數(shù)與“欲望膨脹型”消費(fèi)者人數(shù),根據(jù)題意得到的可能取值,求出其對(duì)應(yīng)概率,即可得出分布列與數(shù)學(xué)期望.

解:(Ⅰ)由題意可得:

因?yàn)榫性回歸模型為,所以,解得;

關(guān)于的線性回歸方程為,

當(dāng)時(shí),,即返回6個(gè)點(diǎn)時(shí)該商品每天銷量約為2百件.

(Ⅱ)(1)根據(jù)題意,這200位擬購買該商品的消費(fèi)者對(duì)返回點(diǎn)數(shù)的心里預(yù)期值的平均值的估計(jì)值為:

,

中位數(shù)的估計(jì)值為.

(2)抽取6名消費(fèi)者中“欲望緊縮型”消費(fèi)者人數(shù)為

“欲望膨脹型”消費(fèi)者人數(shù)為.

由題意的可能取值為,

所以, ,

故隨機(jī)變量的分布列為

X

1

2

3

P

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

已知曲線的極坐標(biāo)方程為,以極點(diǎn)為直角坐標(biāo)原點(diǎn),以極軸為軸的正半軸建立平面直角坐標(biāo)系,將曲線向左平移個(gè)單位長度,再將得到的曲線上的每一個(gè)點(diǎn)的橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變,得到曲線

(1)求曲線的直角坐標(biāo)方程;

(2)已知直線的參數(shù)方程為,(為參數(shù)),點(diǎn)為曲線上的動(dòng)點(diǎn),求點(diǎn)到直線距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)討論的單調(diào)性;

(2)若有兩個(gè)極值點(diǎn),記過點(diǎn)的直線的斜率為k,問:是否存在m,使得?若存在,求出m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】教材曾有介紹:圓上的點(diǎn)處的切線方程為。我們將其結(jié)論推廣:橢圓上的點(diǎn)處的切線方程為,在解本題時(shí)可以直接應(yīng)用。已知,直線與橢圓有且只有一個(gè)公共點(diǎn).

(1)求的值;

(2)設(shè)為坐標(biāo)原點(diǎn),過橢圓上的兩點(diǎn)分別作該橢圓的兩條切線、,且交于點(diǎn)。當(dāng)變化時(shí),求面積的最大值;

(3)在(2)的條件下,經(jīng)過點(diǎn)作直線與該橢圓交于兩點(diǎn),在線段上存在點(diǎn),使成立,試問:點(diǎn)是否在直線上,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】獎(jiǎng)飯店推出甲.乙兩種新菜品,為了了解兩種菜品的受歡迎程度,現(xiàn)統(tǒng)計(jì)一周內(nèi)兩種菜品每天的銷售量,得到下面的莖葉圖.下列說法中,不正確的是(

A.甲菜品銷售量的眾數(shù)比乙菜品銷售量的眾數(shù)小

B.甲菜品銷售量的中位數(shù)比乙菜品銷售量的中位數(shù)小

C.甲菜品銷售量的平均值比乙菜品銷售量的平均值大

D.甲菜品銷售量的方差比乙菜品銷售量的方差大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的左、右焦點(diǎn)分別為,離心率為,過焦點(diǎn)且垂直于軸的直線被橢圓截得的線段長為

(Ⅰ)求橢圓的方程;

(Ⅱ)點(diǎn)為橢圓上一動(dòng)點(diǎn),連接、,設(shè)的角平分線交橢圓的長軸于點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 當(dāng)時(shí),的最小值等于____;若對(duì)于定義域內(nèi)的任意恒成立,則實(shí)數(shù)的取值范圍是____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某書店剛剛上市了《中國古代數(shù)學(xué)史》,銷售前該書店擬定了5種單價(jià)進(jìn)行試銷,每種單價(jià)(元)試銷l天,得到如表單價(jià)(元)與銷量(冊(cè))數(shù)據(jù):

單價(jià)(元)

18

19

20

21

22

銷量(冊(cè))

61

56

50

48

45

(l)根據(jù)表中數(shù)據(jù),請(qǐng)建立關(guān)于的回歸直線方程:

(2)預(yù)計(jì)今后的銷售中,銷量(冊(cè))與單價(jià)(元)服從(l)中的回歸方程,已知每冊(cè)書的成本是12元,書店為了獲得最大利潤,該冊(cè)書的單價(jià)應(yīng)定為多少元?

附:,,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為積極響應(yīng)國家“陽光體育運(yùn)動(dòng)”的號(hào)召,某學(xué)校在了解到學(xué)生的實(shí)際運(yùn)動(dòng)情況后,發(fā)起以“走出教室,走到操場(chǎng),走到陽光”為口號(hào)的課外活動(dòng)倡議。為調(diào)查該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的情況,從高一高二基礎(chǔ)年級(jí)與高三三個(gè)年級(jí)學(xué)生中按照4:3:3的比例分層抽樣,收集300位學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)),得到如圖所示的頻率分布直方圖。

(1)據(jù)圖估計(jì)該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間.并估計(jì)高一年級(jí)每周平均體育運(yùn)動(dòng)時(shí)間不足4小時(shí)的人數(shù);

(2)規(guī)定每周平均體育運(yùn)動(dòng)時(shí)間不少于6小時(shí)記為“優(yōu)秀”,否則為“非優(yōu)秀”,在樣本數(shù)據(jù)中,有30位高三學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間不少于6小時(shí),請(qǐng)完成下列列聯(lián)表,并判斷是否有99%的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間是否“優(yōu)秀”與年級(jí)有關(guān)”.

基礎(chǔ)年級(jí)

高三

合計(jì)

優(yōu)秀

非優(yōu)秀

合計(jì)

300

P(K2k0)

0.10

0.05

0.010

0.005

k0

2.706

3.841

6.635

7.879

附:K2na+b+c+d

查看答案和解析>>

同步練習(xí)冊(cè)答案