已知橢圓和雙曲線,其中為橢圓的焦點(diǎn),且P是橢圓與雙曲線的一個(gè)交點(diǎn),則=____________.

 

【答案】

 -                   

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)圓錐曲線上任意兩點(diǎn)連成的線段稱為弦.若圓錐曲線上的一條弦垂直于其對(duì)稱軸,我們將該弦稱之為曲線的垂軸弦.已知橢圓C:
x2
4
+y2=1

(1)過橢圓C的右焦點(diǎn)作一條垂直于x軸的垂軸弦MN,求MN的長度;
(2)若點(diǎn)P是橢圓C上不與頂點(diǎn)重合的任意一點(diǎn),MN是橢圓C的短軸,直線MP、NP分別交x軸于點(diǎn)E(xE,0)和點(diǎn)F(xF,0)(如圖),求xE?xF的值;
(3)在(2)的基礎(chǔ)上,把上述橢圓C一般化為
x2
a2
+
y2
b2
=1(a>b>0)
,MN是任意一條垂直于x軸的垂軸弦,其它條件不變,試探究xE?xF是否為定值?(不需要證明);請(qǐng)你給出雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
中相類似的結(jié)論,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓M:
x2
8
+
y2
4
=1
和直線l1:y=
3
x
,若雙曲線N的一條漸近線為l1,其焦點(diǎn)與M的焦點(diǎn)相同.
(1)求雙曲線N的方程;
(2)設(shè)直線l2過點(diǎn)P(0,4),且與雙曲線N相交于A,B兩點(diǎn),與x軸交于點(diǎn)Q(Q與雙曲線N的頂點(diǎn)不重合),若
PQ
=λ1
QA
=λ2
QB
,且λ1+λ2=-
8
3
,求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次曲線Ck的方程:
x2
9-k
+
y2
4-k
=1

(1)分別求出方程表示橢圓和雙曲線的條件;
(2)若雙曲線Ck與直線y=x+1有公共點(diǎn)且實(shí)軸最長,求雙曲線方程;
(3)m、n為正整數(shù),且m<n,是否存在兩條曲線Cm、Cn,其交點(diǎn)P與點(diǎn)F1(-
5
,0),F2(
5
,0)
滿足PF1⊥PF2,若存在,求m、n的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•河北區(qū)一模)已知橢圓C的方程為 
x2
a2
+
y2
b2
=1 
(a>b>0),過其左焦點(diǎn)F1(-1,0)斜率為1的直線交橢圓于P、Q兩點(diǎn).
(Ⅰ)若
OP
+
OQ
a
=(-3,1)共線,求橢圓C的方程;
(Ⅱ)已知直線l:x+y-
1
2
=0,在l上求一點(diǎn)M,使以橢圓的焦點(diǎn)為焦點(diǎn)且過M點(diǎn)的雙曲線E的實(shí)軸最長,求點(diǎn)M的坐標(biāo)和此雙曲線E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省寧波市慈溪市高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知橢圓和直線,若雙曲線N的一條漸近線為l1,其焦點(diǎn)與M的焦點(diǎn)相同.
(1)求雙曲線N的方程;
(2)設(shè)直線l2過點(diǎn)P(0,4),且與雙曲線N相交于A,B兩點(diǎn),與x軸交于點(diǎn)Q(Q與雙曲線N的頂點(diǎn)不重合),若,求直線l2的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案