如果A={y|y=x2-2x+a,x∈R},B={x|2≤22-x<8,x∈Z},如果A∩B=B,則a的取值范圍是
(-∞,1]
(-∞,1]
分析:化簡集合A 為{y|y≥a-1},B={0,1},再由A∩B=B,可得a-1≤0,由此求得a的取值范圍.
解答:解:∵A={y|y=x2-2x+a,x∈R}={y|y=(x-1)2+a-1}={y|y≥a-1},
B={x|2≤22-x<8,x∈Z}={x|1≤2-x<3,x∈z}={x|-1<x≤1x∈z}={0,1},且A∩B=B,
∴a-1≤0,解得 a≤1,
故答案為(-∞,1].
點(diǎn)評(píng):本題主要考查集合關(guān)系中參數(shù)的取值范圍問題,兩個(gè)集合的交集的定義和求法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

14、有六個(gè)命題:
①如果函數(shù)y=f(x)滿足f(a+x)=f(a-x),則y=f(x)圖象關(guān)于x=a對(duì)稱;②如果函數(shù)f(x)滿足f(a+x)=f(a-x),則y=f(x)的圖象關(guān)于x=0對(duì)稱;③如果函數(shù)y=f(x)滿足f(2a-x)=f(x),則y=f(x)的圖象關(guān)于x=a對(duì)稱;④函數(shù)y=f(x)與
f(2a-x)的圖象關(guān)于x=a對(duì)稱;⑤函數(shù)y=f(a-x)與y=f(a+x)的圖象關(guān)于x=a對(duì)稱;⑥函數(shù)y=f(a-x)與y=f(a+x)的圖象關(guān)于x=0對(duì)稱.則正確的命題是
①③④⑥
(請(qǐng)將你認(rèn)為正確的命題前的序號(hào)全部填入題后橫線上,少填、填錯(cuò)均不得分).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如果A={y|y=x2-2x+a,x∈R},B={x|2≤22-x<8,x∈Z},如果A∩B=B,則a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

有六個(gè)命題:
①如果函數(shù)y=f(x)滿足f(a+x)=f(a-x),則y=f(x)圖象關(guān)于x=a對(duì)稱;②如果函數(shù)f(x)滿足f(a+x)=f(a-x),則y=f(x)的圖象關(guān)于x=0對(duì)稱;③如果函數(shù)y=f(x)滿足f(2a-x)=f(x),則y=f(x)的圖象關(guān)于x=a對(duì)稱;④函數(shù)y=f(x)與
f(2a-x)的圖象關(guān)于x=a對(duì)稱;⑤函數(shù)y=f(a-x)與y=f(a+x)的圖象關(guān)于x=a對(duì)稱;⑥函數(shù)y=f(a-x)與y=f(a+x)的圖象關(guān)于x=0對(duì)稱.則正確的命題是______(請(qǐng)將你認(rèn)為正確的命題前的序號(hào)全部填入題后橫線上,少填、填錯(cuò)均不得分).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省模擬題 題型:解答題

設(shè)a,b∈R,a>0)。
(Ⅰ)當(dāng)λ1=1,λ2=0時(shí),設(shè)x1,x2是f(x)的兩個(gè)極值點(diǎn),
①如果x1<1<x2<2,求證:f′(-1)>3;
②如果a≥2,且x2-x1=2且x∈(x1,x2)時(shí),函數(shù)g(x)=f′(x)+2(x-x2)的最小值為h(a),求h(a)的最大值;
(Ⅱ)當(dāng)λ1=0,λ2=1時(shí),
①求函數(shù)y=f(x)-3(ln3+1)x的最小值;
②對(duì)于任意的實(shí)數(shù)a,b,c,當(dāng)a+b+c=3時(shí),求證:3a·a+3b·b+3c·c≥9。

查看答案和解析>>

同步練習(xí)冊(cè)答案