已知是單調(diào)遞增的等差數(shù)列,首項(xiàng),前項(xiàng)和為;數(shù)列是等比數(shù)列,首項(xiàng)
(1)求的通項(xiàng)公式;
(2)令的前20項(xiàng)和.
(1),;(2).

試題分析:(1)對(duì)等差數(shù)列、等比數(shù)列,首先是考慮求出首項(xiàng)和公差公比.在本題中由于已經(jīng)知道故只需求出公差公比.因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025529873850.png" style="vertical-align:middle;" />,由此便可得一個(gè)方程組,解這個(gè)方程組即可.
(2)由(1)得:,所以.又,這樣兩項(xiàng)兩項(xiàng)結(jié)合相加,便可利用等差數(shù)列的求和公式求出.
試題解析:(1)設(shè)公差為,公比為,則,
 
,
是單調(diào)遞增的等差數(shù)列,.
,,
(2) 因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025529701521.png" style="vertical-align:middle;" />,所以.
又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025529920657.png" style="vertical-align:middle;" />,所以

.項(xiàng)和.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列的前項(xiàng)和為,對(duì)一切正整數(shù),點(diǎn)都在函數(shù)的圖象上.
(1)求,
(2)求數(shù)列的通項(xiàng)公式;
(3)若,求證數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列,,,,為數(shù)列的前項(xiàng)和,為數(shù)列的前項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和
(3)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

數(shù)列的通項(xiàng)公式為 ,,是數(shù)列的前項(xiàng)和,則的最大值為(     )
A.280B.300C.310D.320

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù),則      

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知數(shù)列滿足,又成等差數(shù)列等于  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,且…);
①證明:數(shù)列是等比數(shù)列;
②若數(shù)列滿足…),求數(shù)列的通項(xiàng)公式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

數(shù)列的通項(xiàng),其前項(xiàng)和為,則為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

 (      )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案