已知a≥0,b≥0,且a+b=2,則

A.ab≤           B.ab≥           C.a2+b2≥2          D.a2+b2≤3

 

【答案】

C

【解析】

試題分析:根據題意,由于a≥0,b≥0,且a+b=2,那么由均值不等式可知,,則可知ab≤1,那么結合得到a2+b2≥2 成立故答案為C

考點:不等式的性質

點評:主要是考查了不等式的性質的運用,屬于基礎題。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知a≥0,b≥0,a+b=1,則
a+
1
2
+
b+
1
2
取值范圍是
[
2
+
6
2
,2]
[
2
+
6
2
,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a≥0,b≥0,且a+b=1,則
1
3a+b
+
2
b+3
的最小值為
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•河西區(qū)二模)已知a≥0,b≥0,且a+b=4,則( �。�

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a≥0,b≥0,且有{(x,y)
x≥0
y≥0
x+2y≤2
}⊆{(x,y)|ax+by≤4}
,則以a,b為坐標的點P(a,b)所形成的平面區(qū)域的面積等于( �。�

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a≥0,b≥0,c≥0,a+b+c=1,y=
a
1+a2
+
b
1+b2
+
c
1+c2
.求ymax=?

查看答案和解析>>

同步練習冊答案