【題目】已知),,且直線與曲線相切.

(1)求的值;

(2)若對內(nèi)的一切實數(shù),不等式恒成立,求實數(shù)的取值范圍;

(3)求證: ).

【答案】(1)(2)(3)見解析

【解析】試題分析:

(1) 設點為切點,列出方程求解可得, .

(2)不等式即: ,

, 必須恒成立.

,由是增函數(shù), .

因此,實數(shù)的取值范圍是.

(3) 結(jié)合前面的結(jié)論,當 時, ,得 ,化簡得 .即可證得結(jié)論.

試題解析:

解:(1)設點為直線與曲線的切點,則有

.(*)

, .(**)

由(*)、(**)兩式,解得, .

(2)由整理,得,

要使不等式恒成立,必須恒成立.

,

, 時, ,則是增函數(shù),

, 是增函數(shù), , .

因此,實數(shù)的取值范圍是.

(3)證明:當時,根據(jù)(1)的推導有, 時,

.令,得

化簡得 ,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若,求函數(shù)的極值和單調(diào)區(qū)間;

(2)若在區(qū)間上至少存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】劉徽是我國魏晉時期著名的數(shù)學家,他編著的《海島算經(jīng)》中有一問題:“今有望海島,立兩表齊,高三丈,前后相去千步,令后表與前表相直。從前表卻行一百二十三步,人目著地取望島峰,與表末參合。從后表卻行百二十七步,人目著地取望島峰,亦與表末參合。問島高幾何?” 意思是:為了測量海島高度,立了兩根表,高均為5步,前后相距1000步,令后表與前表在同一直線上,從前表退行123步,人恰觀測到島峰,從后表退行127步,也恰觀測到島峰,則島峰的高度為( )(注:3丈=5步,1里=300步)

A. 4里55步 B. 3里125步 C. 7里125步 D. 6里55步

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某科研小組研究發(fā)現(xiàn):一棵水蜜桃樹的產(chǎn)量(單位:百千克)與肥料費用(單位:百元)滿足如下關(guān)系:,且投入的肥料費用不超過5百元.此外,還需要投入其他成本(如施肥的人工費等)百元.已知這種水蜜桃的市場售價為16元/千克(即16百元/百千克),且市場需求始終供不應求.記該棵水蜜桃樹獲得的利潤為(單位:百元).

(1)求利潤函數(shù)的函數(shù)關(guān)系式,并寫出定義域;

(2)當投入的肥料費用為多少時,該水蜜桃樹獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列正確命題有__________

①“”是“”的充分不必要條件

②如果命題“”為假命題,則中至多有一個為真命題

③設,若,則的最小值為

④函數(shù)上存在,使,則a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】先后2次拋擲一枚骰子,將得到的點數(shù)分別記為

)求滿足的概率;

)設三條線段的長分別為5,求這三條線段能圍成等腰三角形(含等邊三角形)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)相鄰兩對稱軸間的距離為,若將的圖像先向左平移個單位,再向下平移1個單位,所得的函數(shù)為奇函數(shù).

(1)求的解析式,并求的對稱中心;

(2)若關(guān)于的方程在區(qū)間上有兩個不相等的實根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和

1)計算,,;

2)猜想的表達式,并用數(shù)學歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線, 是焦點,直線是經(jīng)過點的任意直線.

(Ⅰ)若直線與拋物線交于兩點,且是坐標原點, 是垂足),求動點的軌跡方程;

(Ⅱ)若、兩點在拋物線上,且滿足,求證:直線必過定點,并求出定點的坐標.

查看答案和解析>>

同步練習冊答案