動(dòng)點(diǎn)與定點(diǎn)的距離和它到直線的距離之比是常數(shù),記點(diǎn)的軌跡為曲線.
(I)求曲線的方程;
(II)設(shè)直線與曲線交于兩點(diǎn),為坐標(biāo)原點(diǎn),求面積的最大值.

(I);(II)

解析試題分析:(I)找出題中的相等關(guān)系,列出化簡(jiǎn)即得曲線的方程;(II)先用弦長公式得,由點(diǎn)到直線距離公式得的高,列出面積表達(dá)式,最后選擇合適的方法求面積的最大值.
試題解析:(I)設(shè)是點(diǎn)到直線的距離,根據(jù)題意,點(diǎn)的軌跡就是集合
  
由此得       
將上式兩邊平方,并化簡(jiǎn)得

所以曲線的方程為  
(II)由,
.

.  
于是
   
又原點(diǎn)到直線的距離, 
所以(當(dāng)時(shí)取等號(hào))
所以面積的最大值為
考點(diǎn):1、曲線方程求法;2、直線與圓錐曲線位置關(guān)系;3、解析幾何最值問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線,點(diǎn)P(-1,0)是其準(zhǔn)線與軸的焦點(diǎn),過P的直線與拋物線C交于A、B兩點(diǎn).
(1)當(dāng)線段AB的中點(diǎn)在直線上時(shí),求直線的方程;
(2)設(shè)F為拋物線C的焦點(diǎn),當(dāng)A為線段PB中點(diǎn)時(shí),求△FAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知橢圓的離心率為,以橢圓的左頂點(diǎn)為圓心作圓,設(shè)圓與橢圓交于點(diǎn)與點(diǎn)

(1)求橢圓的方程;
(2)求的最小值,并求此時(shí)圓的方程;
(3)設(shè)點(diǎn)是橢圓上異于,的任意一點(diǎn),且直線分別與軸交于點(diǎn)為坐標(biāo)原點(diǎn),
求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,曲線與曲線相交于、、、四個(gè)點(diǎn).
⑴ 求的取值范圍;
⑵ 求四邊形的面積的最大值及此時(shí)對(duì)角線的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知、分別是橢圓: 的左、右焦點(diǎn),點(diǎn)在直線上,線段的垂直平分線經(jīng)過點(diǎn).直線與橢圓交于不同的兩點(diǎn)、,且橢圓上存在點(diǎn),使,其中是坐標(biāo)原點(diǎn),是實(shí)數(shù).
(Ⅰ)求的取值范圍;
(Ⅱ)當(dāng)取何值時(shí),的面積最大?最大面積等于多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

橢圓的左、右焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),過F1作與x軸不重合的直線l交橢圓于A,B兩點(diǎn).
(I)若ΔABF2為正三角形,求橢圓的離心率;
(II)若橢圓的離心率滿足,為坐標(biāo)原點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓,為其右焦點(diǎn),離心率為.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn),問是否存在直線,使與橢圓交于兩點(diǎn),且.若存在,求出的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的四個(gè)頂點(diǎn)恰好是一邊長為2,一內(nèi)角為的菱形的四個(gè)頂點(diǎn).
(I)求橢圓的方程;
(II)直線與橢圓交于兩點(diǎn),且線段的垂直平分線經(jīng)過點(diǎn),求為原點(diǎn))面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線C:與橢圓共焦點(diǎn),

(Ⅰ)求的值和拋物線C的準(zhǔn)線方程;
(Ⅱ)若P為拋物線C上位于軸下方的一點(diǎn),直線是拋物線C在點(diǎn)P處的切線,問是否存在平行于的直線與拋物線C交于不同的兩點(diǎn)A,B,且使?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案