【題目】經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個銷售季度內(nèi),每售出該產(chǎn)品獲利潤500元,未售出的產(chǎn)品,每虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場需求量的頻率分布直圖,如圖所示.經(jīng)銷商為下一個銷售季度購進了該農(nóng)產(chǎn)品.以)表示下一個銷售季度內(nèi)的市場需求量, (單位:元)表示下一個銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤.

(Ⅰ)將表示為的函數(shù);

(Ⅱ)根據(jù)直方圖估計利潤不少于57000元的概率.

【答案】T=.()下一個銷售季度的利潤T不少于57000元的概率的估計值為0.7

【解析】試題分析:(I)由題意先分段寫出,當(dāng)X∈[100130)時,當(dāng)X∈[130,150)時,和利潤值,最后利用分段函數(shù)的形式進行綜合即可.

II)由(I)知,利潤T不少于57000元,當(dāng)且僅當(dāng)120≤X≤150.再由直方圖知需求量X∈[120,150]的頻率為0.7,利用樣本估計總體的方法得出下一個銷售季度的利潤T不少于57000元的概率的估計值.

解:(I)由題意得,當(dāng)X∈[100,130)時,T=500X﹣300130﹣X=800X﹣39000,

當(dāng)X∈[130150]時,T=500×130=65000,

∴T=

II)由(I)知,利潤T不少于57000元,當(dāng)且僅當(dāng)120≤X≤150

由直方圖知需求量X∈[120150]的頻率為0.7,

所以下一個銷售季度的利潤T不少于57000元的概率的估計值為0.7

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐中,,平面平面,點分別是的中點.

(1)求證:平面;

(2)已知,求三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)一種儀器的元件,由于受生產(chǎn)能力和技術(shù)水平的限制,會產(chǎn)生一些次品,根據(jù)經(jīng)驗知道,其次品率P與日產(chǎn)量x(萬件)之間大體滿足關(guān)系: .(注:次品率=次品數(shù)/生產(chǎn)量,如P=0.1表示每生產(chǎn)10件產(chǎn)品,有1件為次品,其余為合格品).已知每生產(chǎn)1萬件合格的元件可以盈利2萬元,但每生產(chǎn)1萬件次品將虧損1萬元,故廠方希望定出合適的日產(chǎn)量.
(1)試將生產(chǎn)這種儀器的元件每天的盈利額T(萬元)表示為日產(chǎn)量x(萬件)的函數(shù);
(2)當(dāng)日產(chǎn)量x為多少時,可獲得最大利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國內(nèi)某知名連鎖店分店開張營業(yè)期間,在固定的時間段內(nèi)消費達到一定標(biāo)準(zhǔn)的顧客可進行一次抽獎活動,隨著抽獎活動的有效開展,參與抽獎活動的人數(shù)越來越多,該分店經(jīng)理對開業(yè)前天參加抽獎活動的人數(shù)進行統(tǒng)計, 表示開業(yè)第天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:

經(jīng)過進一步統(tǒng)計分析,發(fā)現(xiàn)具有線性相關(guān)關(guān)系.

(1)若從這天中隨機抽取兩天,求至少有天參加抽獎人數(shù)超過的概率;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程,并估計若該活動持續(xù)天,共有多少名顧客參加抽獎.

參考公式: , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|< )的部分圖象如圖所示.

(1)求f(x)> 在x∈[0,π]上的解集;
(2)設(shè)g(x)=2 cos2x+f(x),g(α)= + ,α∈( , ),求sin2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,點是橢圓上的點,離心率.

(1)求橢圓的方程;

(2)點在橢圓上,若點與點關(guān)于原點對稱,連接并延長與橢圓的另一個交點為,連接,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國內(nèi)某知名連鎖店分店開張營業(yè)期間,在固定的時間段內(nèi)消費達到一定標(biāo)準(zhǔn)的顧客可進行一次抽獎活動,隨著抽獎活動的有效開展,參與抽獎活動的人數(shù)越來越多,該分店經(jīng)理對開業(yè)前天參加抽獎活動的人數(shù)進行統(tǒng)計, 表示開業(yè)第天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:

經(jīng)過進一步統(tǒng)計分析,發(fā)現(xiàn)具有線性相關(guān)關(guān)系.

(1)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(2)若該分店此次抽獎活動自開業(yè)始,持續(xù)天,參加抽獎的每位顧客抽到一等獎(價值元獎品)的概率為,抽到二等獎(價值元獎品)的概率為,抽到三等獎(價值元獎品)的概率為.

試估計該分店在此次抽獎活動結(jié)束時送出多少元獎品?

參考公式: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=2sin(﹣2x+ )的圖象向左平移 個單位后,得到的圖象對應(yīng)的解析式應(yīng)該是(
A.y=﹣2sin(2x)
B.y=﹣2sin(2x+
C.y=﹣2sin(2x﹣
D.y=﹣2sin(2x+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若,證明

(2)若,求的取值范圍;并證明此時的極值存在且與無關(guān).

查看答案和解析>>

同步練習(xí)冊答案