Youth’s Day, a celebration was held on our campus yesterday.


  1. A.
    In favor of
  2. B.
    In order of
  3. C.
    In search of
  4. D.
    In memory of
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義F(x,y)=(1+x)y,x,y∈(0,+∞)
(1)令函數(shù)f(x)=F(1,log2(x2-4x+9))的圖象為曲線c1,曲線c1與y軸交于點A(0,m),過坐標原點O作曲線c1的切線,切點為B(n,t)(n>0)設(shè)曲線c1在點A、B之間的曲線段與OA、OB所圍成圖形的面積為S,求S的值;
(2)當(dāng)x,y∈N*且x<y時,證明F(x,y)>F(y,x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求由約束條件
x+y≤5
2x+y≤6
x≥0
y≥0
確定的平面區(qū)域的面積S和周長C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項和記為Sn,前kn項和記為Skn(n,k∈N*),對給定的常數(shù)k,若
S(k+1)n
Skn
是與n無關(guān)的非零常數(shù)t=f(k),則稱該數(shù)列{an}是“k類和科比數(shù)列”.
(理科)(1)已知Sn=(
an+1
2
)2,an>0
,求數(shù)列{an}的通項公式;
(2)證明(1)的數(shù)列{an}是一個“k類和科比數(shù)列”;
(3)設(shè)正數(shù)列{cn}是一個等比數(shù)列,首項c1,公比Q(Q≠1),若數(shù)列{lgcn}是一個“k類和科比數(shù)列”,探究c1與Q的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
y2
a2
-
x2
b2
=1
(a>0,b>0)的上、下頂點分別為A、B,一個焦點為F(0,c)(c>0),兩準線間的距離為1,|AF|、
|AB|、|BF|成等差數(shù)列.
(Ⅰ)求雙曲線的方程;
(Ⅱ)設(shè)過點F作直線l交雙曲線上支于M、N兩點,如果S△MON=-
7
2
tan∠MON,求△MBN的面積.

查看答案和解析>>

同步練習(xí)冊答案