點(diǎn)是橢圓上的任意一點(diǎn),是橢圓的兩個(gè)焦點(diǎn),且∠,則該橢圓的離心率的取值范圍是             

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•濟(jì)南一模)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的長(zhǎng)軸長(zhǎng)為4.
(1)若以原點(diǎn)為圓心、橢圓短半軸為半徑的圓與直線y=x+2相切,求橢圓焦點(diǎn)坐標(biāo);
(2)若點(diǎn)P是橢圓C上的任意一點(diǎn),過(guò)原點(diǎn)的直線L與橢圓相交于M,N兩點(diǎn),記直線PM,PN的斜率分別為kPM,kPN,當(dāng)kPMkPN=-
1
4
時(shí),求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•甘肅一模)設(shè)橢圓M:
x2
a2
+
y2
2
=1
(a>
2
)
的右焦點(diǎn)為F1,直線l:x=
a2
a2-2
與x軸交于點(diǎn)A,若
OF1
+2
AF1
=0
(其中O為坐標(biāo)原點(diǎn)).
(1)求橢圓M的方程;
(2)設(shè)P是橢圓M上的任意一點(diǎn),EF為圓N:x2+(y-2)2=1的任意一條直徑(E、F為直徑的兩個(gè)端點(diǎn)),求
PE
PF
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•惠州模擬)(理科)設(shè)橢圓M:
x2
a2
+
y2
2
=1(a>
2
)
的右焦點(diǎn)為F1,直線l:x=
a2
a2-2
與x軸交于點(diǎn)A,若
OF1
+2
AF1
=0
(其中O為坐標(biāo)原點(diǎn))
(1)求橢圓M的方程;
(2)設(shè)點(diǎn)P是橢圓M上的任意一點(diǎn),線段EF為圓N:x2+(y-2)2=1的任意一條直徑(E、F為直徑的兩個(gè)端點(diǎn)),求
PE
PF
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年重慶市銅梁中學(xué)高三(下)3月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)橢圓的右焦點(diǎn)為F1,直線與x軸交于點(diǎn)A,若(其中O為坐標(biāo)原點(diǎn)).
(1)求橢圓M的方程;
(2)設(shè)P是橢圓M上的任意一點(diǎn),EF為圓N:x2+(y-2)2=1的任意一條直徑(E、F為直徑的兩個(gè)端點(diǎn)),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年甘肅省高考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(理科)設(shè)橢圓的右焦點(diǎn)為F1,直線與x軸交于點(diǎn)A,若(其中O為坐標(biāo)原點(diǎn))
(1)求橢圓M的方程;
(2)設(shè)點(diǎn)P是橢圓M上的任意一點(diǎn),線段EF為圓N:x2+(y-2)2=1的任意一條直徑(E、F為直徑的兩個(gè)端點(diǎn)),求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案