設(shè)a為實數(shù),設(shè)函數(shù)的最大值為g(a)。
(Ⅰ)設(shè)t=,求t的取值范圍,并把f(x)表示為t的函數(shù)m(t)
(Ⅱ)求g(a)
(Ⅲ)試求滿足的所有實數(shù)a
(Ⅰ)m(t)=a()+t=
(Ⅱ)
(Ⅲ)滿足的所有實數(shù)a為或a=1
【解析】解:(Ⅰ)令
要使有t意義,必須1+x≥0且1-x≥0,即-1≤x≤1,
∴t≥0 ①
t的取值范圍是由①得
∴m(t)=a()+t=
(Ⅱ)由題意知g(a)即為函數(shù)的最大值。
注意到直線是拋物線的對稱軸,分以下幾種情況討論。
(1)當(dāng)a>0時,函數(shù)y=m(t), 的圖象是開口向上的拋物線的一段,
由<0知m(t)在上單調(diào)遞增,∴g(a)=m(2)=a+2
(2)當(dāng)a=0時,m(t)=t, ,∴g(a)=2.
(3)當(dāng)a<0時,函數(shù)y=m(t), 的圖象是開口向下的拋物線的一段,
若,即則
若,即則
若,即則
綜上有
(III)
情形1:當(dāng)時,此時,
由,與a<-2矛盾。
情形2:當(dāng)時,此時,
解得, 與矛盾。
情形3:當(dāng)時,此時
所以
情形4:當(dāng)時,,此時,
矛盾。
情形5:當(dāng)時,,此時g(a)=a+2,
由解得矛盾。
情形6:當(dāng)a>0時,,此時g(a)=a+2,
由,由a>0得a=1.
綜上知,滿足的所有實數(shù)a為或a=1
科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年湖南省長沙市同升湖實驗學(xué)校高三(上)第二次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省無錫市江陰一中高一(上)第12周數(shù)學(xué)限時作業(yè)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆江西省上饒市、德興一中等高二四校聯(lián)考數(shù)學(xué)試卷 題型:解答題
設(shè)a為實數(shù),設(shè)函數(shù)的最大值為g(a)。
。á瘢┰O(shè)t=,求t的取值范圍,并把f(x)表示為t的函數(shù)m(t)
(Ⅱ)求g(a)(Ⅲ)試求滿足的所有實數(shù)a
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江蘇高考真題 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com