【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當時,證明:對任意的,有.
【答案】(1)詳見解析(2)詳見解析
【解析】試題分析:(1)求導,通過討論導函數(shù)的零點的大小確定導函數(shù)的符號,進而確定函數(shù)的單調(diào)性;(2)將問題合理等價轉(zhuǎn)化為證明不等式恒成立問題,再轉(zhuǎn)化為求函數(shù)的最值問題,證明即可.
試題解析:(1)由題意知:
當時,由,得且,
, ,
①當時, 在上單調(diào)遞增,在上單調(diào)遞減;
②當時, 在上單調(diào)遞增,在上單調(diào)遞減;
③當時, 在上單調(diào)遞增;
④當時, 在和上單調(diào)遞增,在上單調(diào)遞減.
(2)當時,要證: 在上恒成立,
只需證: 在上恒成立,
令, ,
因為,
易得在上遞增,在上遞減,故,
由得
當時, ;當時,
所以在上遞減,在上遞增
所以
又,∴,即,
所以在上恒成立,
故當時,對任意的, 恒成立.
科目:高中數(shù)學 來源: 題型:
【題目】已知直線C1 (t為參數(shù)),C2 (θ為參數(shù)),
(Ⅰ)當α= 時,求C1與C2的交點坐標;
(Ⅱ)過坐標原點O做C1的垂線,垂足為A,P為OA中點,當α變化時,求P點的軌跡的參數(shù)方程,并指出它是什么曲線.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)市場調(diào)查,某商品在過去的20天內(nèi)的價格(單位:元)與銷售量(單位:件)均為時間(單位:天)的函數(shù),且價格滿足,銷售量滿足,其中, .
(1)請寫出該商品的日銷售額(單位:元)與時間(單位:天)的函數(shù)解析式;
(2)求該商品的日銷售額的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(數(shù)學(文)卷·2017屆湖北省沙市中學高三上學期第七次雙周練第16題)埃及數(shù)學中有一個獨特現(xiàn)象:除用一個單獨的符號表示以外,其它分數(shù)都要寫成若干個單分數(shù)和的形式.例如可以這樣理解:假定有兩個面包,要平均分給5個人,如果每人,不夠,每人,余,再將這分成5份,每人得,這樣每人分得.形如的分數(shù)的分解: , , ,按此規(guī)律, =____________; = ____________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】5名男生4名女生站成一排,求滿足下列條件的排法:
(1)女生都不相鄰有多少種排法?
(2)男生甲、乙、丙排序一定(只考慮位置的前后順序),有多少種排法?
(3)男甲不在首位,男乙不在末位,有多少種排法?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),A,B是曲線上兩個不同的點.
(Ⅰ)求的單調(diào)區(qū)間,并寫出實數(shù)的取值范圍;
(Ⅱ)證明: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左右焦點與其短軸得一個端點是正三角形的三個頂點,點在橢圓上,直線與橢圓交于兩點,與軸, 軸分別相交于點合點,且,點時點關于軸的對稱點, 的延長線交橢圓于點,過點分別做軸的垂線,垂足分別為.
(1) 求橢圓的方程;
(2)是否存在直線,使得點平分線段?若存在,請求出直線的方程;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形, ,側(cè)面底面, , , 分別為的中點,點在線段上.
(Ⅰ)求證: 平面;
(Ⅱ)如果直線與平面所成的角和直線與平面所成的角相等,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】拖延癥總是表現(xiàn)在各種小事上,但日積月累,特別影響個人發(fā)展.某校的一個社會實踐調(diào)查小組,在對該校學生進行“是否有明顯拖延癥”的調(diào)查中,隨機發(fā)放了110份問卷.對收回的100份有效問卷進行統(tǒng)計,得到如下列聯(lián)表:
有明顯拖延癥 | 無明顯拖延癥 | 合計 | |
男 | 35 | 25 | 60 |
女 | 30 | 10 | 40 |
合計 | 65 | 35 | 100 |
(Ⅰ)按女生是否有明顯拖延癥進行分層,已經(jīng)從40份女生問卷中抽取了8份問卷,現(xiàn)從這8份問卷中再隨機抽取3份,并記其中無明顯拖延癥的問卷的份數(shù)為,試求隨機變量的分布列和數(shù)學期望;
(Ⅱ)若在犯錯誤的概率不超過的前提下認為無明顯拖延癥與性別有關,那么根據(jù)臨界值表,最精確的的值應為多少?請說明理由.
附:獨立性檢驗統(tǒng)計量,其中.
獨立性檢驗臨界值表:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com