函數(shù)y=x+
5
x-1
(x>1)的最小值為
 
考點:基本不等式
專題:不等式的解法及應(yīng)用
分析:變形利用基本不等式的性質(zhì)即可得出.
解答: 解:∵x>1,
∴y=x+
5
x-1
=x-1+
5
x-1
+1
≥2
(x-1)•
5
x-1
+1=2
5
+1,當且僅當x=
5
+1時取等號.
∴函數(shù)y=x+
5
x-1
(x>1)的最小值為2
5
+1.
故答案為:2
5
+1.
點評:本題考查了基本不等式的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0.
(1)判斷直線l與圓C的位置關(guān)系;
(2)當直線l與圓C相交時,求直線l被圓C截得的最短弦長及此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在棱長為a的正方體ABCD-A1B1C1D1內(nèi)任取一點P,則點P到點A的距離小等于a的概率為(  )
A、
2
2
B、
2
2
π
C、
1
6
D、
1
6
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x+2x2,x≤0
-1+lnx,x>0
的零點個數(shù)為(  )
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(2,-2)到直線y=x+1的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩個物體在相距為423m的同一直線上從0s開始同時相向運動,物體A的運動速度v與時間t之間的關(guān)系為v=2t+1(v的單位是m/s,t的單位是s),物體B的運動速度v與時間t之間的關(guān)系為v=1+8t,.則它們相遇時,A物體的運動路程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=-x2+5x-6的零點是( 。
A、(-2,3)B、2,3
C、(2,3)D、-2,-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax3+9(a∈R),f(-2)=3,則f(2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)5x+1=a,5y-1=b,則5x+y=( 。
A、a+b
B、ab
C、a-b
D、
a
b

查看答案和解析>>

同步練習(xí)冊答案