1.若復(fù)數(shù)$\frac{a+i}{1+2i}({a∈R})$為純虛數(shù),其中i為虛數(shù)單位,則a=( 。
A.2B.$\frac{1}{2}$C.-2D.$-\frac{1}{2}$

分析 利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由實(shí)部為0且虛部不為0求解.

解答 解:由$\frac{a+i}{1+2i}=\frac{(a+i)(1-2i)}{(1+2i)(1-2i)}=\frac{a+2+(1-2a)i}{5}$為純虛數(shù),
得$\left\{\begin{array}{l}{a+2=0}\\{1-2a≠0}\end{array}\right.$,解得a=-2.
故選:C.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.點(diǎn)P在曲線$\frac{x^2}{2}-{y^2}$=1上,點(diǎn)Q在曲線x2+(y-3)2=4上,線段PQ的中點(diǎn)為M,O是坐標(biāo)原點(diǎn),則線段OM長(zhǎng)的最小值是$\sqrt{2}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)集合A={x|(x+4)(x-4)>0},B={x|-2<x≤6},則A∩B等于(  )
A.(-2,4)B.(4,-2)C.(-4,6)D.(4,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)f(x)=|sinx|+|sin(x+$\frac{π}{3}$)|的值域?yàn)閇$\frac{\sqrt{3}}{2}$,$\sqrt{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,2acosC+2ccosA=a+c.
(Ⅰ)若$\frac{sinA}{sinB}=\frac{3}{4}$,求$\frac{c}$的值;
(Ⅱ)若$C=\frac{2π}{3}$,且c-a=8,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若直線y=k(x+2)上存在點(diǎn)(x,y)∈{(x,y)|x-y≥0,x+y≤1,y≥-1},則實(shí)數(shù)k的取值區(qū)間為[-1,$\frac{1}{5}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合A={x|y=log2(x-1)},集合B={x|(x+1)(x-2)≤0},則A∪B=( 。
A.[-1,+∞)B.(1,2]C.(1,+∞)D.[-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,某港口一天的水深變化曲線近似滿足函數(shù)y=Asin$\frac{π}{6}$t+k,則水深從最小值變化到最大值至少需要( 。
A.6hB.8hC.12hD.24h

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知△ABC三個(gè)內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,且3sinA=a,sinB=$\frac{3}{4}$,則b等于( 。
A.$\frac{9}{4}$B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案