【題目】如圖,ABCD是邊長(zhǎng)為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成角為60°.
(1)求證:AC⊥平面BDE;
(2)設(shè)點(diǎn)M是線段BD上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)M的位置,使得AM∥平面BEF,并證明你的結(jié)論.
【答案】
(1)證明:因?yàn)镈E⊥平面ABCD,
所以DE⊥AC.
因?yàn)锳BCD是正方形,
所以AC⊥BD,因?yàn)镈E∩BD=D
從而AC⊥平面BDE.
(2)解:當(dāng)M是BD的一個(gè)三等分點(diǎn),即3BM=BD時(shí),AM∥平面BEF.
取BE上的三等分點(diǎn)N,使3BN=BE,連接MN,NF,則DE∥MN,且DE=3MN,
因?yàn)锳F∥DE,且DE=3AF,所以AF∥MN,且AF=MN,
故四邊形AMNF是平行四邊形.
所以AM∥FN,
因?yàn)锳M平面BEF,F(xiàn)N平面BEF,
所以AM∥平面BEF.
【解析】(1)根據(jù)DE⊥平面ABCD,由線面垂直的判定定理可知DE⊥AC,由ABCD是正方形可知AC⊥BD,而DE∩BD=D,滿足線面垂直的判定所需條件,從而證得結(jié)論;(2)當(dāng)M是BD的一個(gè)三等分點(diǎn),即3BM=BD時(shí),AM∥平面BEF.取BE上的三等分點(diǎn)N,使3BN=BE,連接MN,NF,則DE∥MN,且DE=3MN,而AF∥DE,且DE=3AF,則四邊形AMNF是平行四邊形,從而AM∥FN,AM平面BEF,F(xiàn)N平面BEF,滿足線面平行的判定定理,從而證得結(jié)論.
【考點(diǎn)精析】本題主要考查了直線與平面平行的判定和直線與平面垂直的判定的相關(guān)知識(shí)點(diǎn),需要掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行;一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直四棱柱中,底面是邊長(zhǎng)為2的正方形, 分別為線段, 的中點(diǎn).
(1)求證: ||平面;
(2)四棱柱的外接球的表面積為,求異面直線與所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的自動(dòng)通風(fēng)設(shè)施.該設(shè)施的下部是等腰梯形,其中為2米,梯形的高為1米, 為3米,上部是個(gè)半圓,固定點(diǎn)為的中點(diǎn). 是由電腦控制可以上下滑動(dòng)的伸縮橫桿(橫桿面積可忽略不計(jì)),且滑動(dòng)過(guò)程中始終保持和平行.當(dāng)位于下方和上方時(shí),通風(fēng)窗的形狀均為矩形(陰影部分均不通風(fēng)).
(1)設(shè)與之間的距離為(且)米,試將通風(fēng)窗的通風(fēng)面積(平方米)表示成關(guān)于的函數(shù);
(2)當(dāng)與之間的距離為多少米時(shí),通風(fēng)窗的通風(fēng)面積取得最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足4Sn﹣1=an2+2an , n∈N* .
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= ,數(shù)列{bn}的前n項(xiàng)和為Tn , 證明: ≤Tn< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)名著,也是古代東方數(shù)學(xué)的代表作.書中有如下問(wèn)題:“今有勾五步,股十二步,問(wèn)勾中容方幾何?”其意思為:“已知直角三角形兩直角邊長(zhǎng)分別為5步和12步,問(wèn)其內(nèi)接正方形邊長(zhǎng)為多少步?”現(xiàn)若向此三角形內(nèi)投豆子,則落在其內(nèi)接正方形內(nèi)的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =( sin3x,﹣y), =(m,cos3x﹣m)(m∈R),且 + = .設(shè)y=f(x).
(1)求f(x)的表達(dá)式,并求函數(shù)f(x)在[ , ]上圖象最低點(diǎn)M的坐標(biāo).
(2)在△ABC中,f(A)=﹣ ,且A> π,D為邊BC上一點(diǎn),AC= DC,BD=2DC,且AD=2 ,求線段DC的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“六一”聯(lián)歡會(huì)上設(shè)有一個(gè)抽獎(jiǎng)游戲.抽獎(jiǎng)箱中共有12張紙條,分一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)、無(wú)獎(jiǎng)四種.從中任取一張,不中獎(jiǎng)的概率為,中二等獎(jiǎng)或三等獎(jiǎng)的概率是.
(Ⅰ)求任取一張,中一等獎(jiǎng)的概率;
(Ⅱ)若中一等獎(jiǎng)或二等獎(jiǎng)的概率是,求任取一張,中三等獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,BC邊上的高AM所在的直線方程為x-2y+1=0,∠A的平分線所在的直線方程為y=0與BC相交于點(diǎn)P,若點(diǎn)B的坐標(biāo)為(1,2).
(1)分別求AB和BC所在直線的方程;
(2)求P點(diǎn)坐標(biāo)和AC所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)求函數(shù)在點(diǎn)點(diǎn)處的切線方程;
(2)當(dāng)時(shí),求函數(shù)的極值點(diǎn)和極值;
(3)當(dāng)時(shí), 恒成立,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com