【題目】函數(shù)y= 的定義域?yàn)?/span> , 值域?yàn)?/span>

【答案】(1,2)∪(2,+∞);(﹣∞,0)∪(0,+∞)
【解析】解:函數(shù)y= ,
其定義域必須滿(mǎn)足:
解得:x>1且x≠2.
∴函數(shù)y= 的定義域?yàn)椋?,2)∪(2,+∞).
又∵ln(x﹣1)值域?yàn)椋ī仭蓿?)∪(0,+∞),
∴y= 值域?yàn)椋ī仭蓿?)∪(0,+∞),
所以答案是:(1,2)∪(2,+∞);(﹣∞,0)∪(0,+∞).
【考點(diǎn)精析】通過(guò)靈活運(yùn)用函數(shù)的定義域及其求法和函數(shù)的值域,掌握求函數(shù)的定義域時(shí),一般遵循以下原則:①是整式時(shí),定義域是全體實(shí)數(shù);②是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù);③是偶次根式時(shí),定義域是使被開(kāi)方式為非負(fù)值時(shí)的實(shí)數(shù)的集合;④對(duì)數(shù)函數(shù)的真數(shù)大于零,當(dāng)對(duì)數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零;求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最。ù螅⿺(shù),這個(gè)數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 ,設(shè)函數(shù),且的圖象過(guò)點(diǎn)和點(diǎn).

(Ⅰ)求的值;

(Ⅱ)將的圖象向左平移)個(gè)單位后得到函數(shù)的圖象.若的圖象上各最高點(diǎn)到點(diǎn)的距離的最小值為1,求的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列四個(gè)命題:
①“三個(gè)球全部放入兩個(gè)盒子,其中必有一個(gè)盒子有一個(gè)以上的球”是必然事件
②“當(dāng)x為某一實(shí)數(shù)時(shí)可使”是不可能事件
③“明天順德要下雨”是必然事件
④“從100個(gè)燈泡中取出5個(gè),5個(gè)都是次品”是隨機(jī)事件.
其中正確命題的個(gè)數(shù)是 ( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線的準(zhǔn)線為,取過(guò)焦點(diǎn)且平行于軸的直線與拋物線交于不同的兩點(diǎn),過(guò)作圓心為的圓,使拋物線上其余點(diǎn)均在圓外,且. 

(Ⅰ)求拋物線和圓的方程;

(Ⅱ)過(guò)點(diǎn)作直線與拋物線和圓依次交于,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)計(jì)劃銷(xiāo)售某種產(chǎn)品,現(xiàn)邀請(qǐng)生產(chǎn)該產(chǎn)品的甲、乙兩個(gè)廠家進(jìn)場(chǎng)試銷(xiāo)10天,兩個(gè)廠家提供的返利方案如下:甲廠家每天固定返利70元,且每賣(mài)出一件產(chǎn)品廠家再返利2元;乙廠家無(wú)固定返利,賣(mài)出40件以?xún)?nèi)(含40件)的產(chǎn)品,每件產(chǎn)品廠家返利4元,超出40件的部分每件返利6元.經(jīng)統(tǒng)計(jì),兩個(gè)廠家10天的試銷(xiāo)情況莖葉圖如下:

(Ⅰ)現(xiàn)從廠家試銷(xiāo)的10天中抽取兩天,求這兩天的銷(xiāo)售量都大于40的概率;

(Ⅱ)若將頻率視作概率,回答以下問(wèn)題:

(。┯浺覐S家的日返利額為(單位:元),求的分布列和數(shù)學(xué)期望;

(ⅱ)商場(chǎng)擬在甲、乙兩個(gè)廠家中選擇一家長(zhǎng)期銷(xiāo)售,如果僅從日返利額的角度考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為商場(chǎng)做出選擇,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2x﹣2x
(1)判斷函數(shù)f(x)的奇偶性;
(2)證明:函數(shù)f(x)為(﹣∞,+∞)上的增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于統(tǒng)計(jì)數(shù)據(jù)的分析,有以下幾個(gè)結(jié)論,其中正確的個(gè)數(shù)為( 。
①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都減去同一個(gè)數(shù)后,平均數(shù)與方差均沒(méi)有變化;
②在線性回歸分析中,相關(guān)系數(shù)r越小,表明兩個(gè)變量相關(guān)性越弱;
③某單位有職工750人,其中青年職工350人,中年職工250人,老年職工150人.為了了解該單位職工的健康情況,用分層抽樣的方法從中抽取樣本,若樣本中的青年職工為7人,則樣本容量為15人.
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=x2﹣mx(m>0)在區(qū)間[0,2]上的最小值記為g(m)
(1)若0<m≤4,求函數(shù)g(m)的解析式;
(2)定義在(﹣∞,0)∪(0,+∞)的函數(shù)h(x)為偶函數(shù),且當(dāng)x>0時(shí),h(x)=g(x),若h(t)>h(4),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形中, ,四邊形為矩形,且平面, .

(1)求證: 平面

(2)點(diǎn)在線段(含端點(diǎn))上運(yùn)動(dòng),當(dāng)點(diǎn)在什么位置時(shí),平面與平面所成銳二面角最大,并求此時(shí)二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案