【題目】定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且在[﹣3,﹣2]上是減函數(shù),若α,β是銳角三角形的兩個(gè)內(nèi)角,則(
A.f(sinα)>f(sinβ)
B.f(sinα)<f(cosβ)
C.f(cosα)<f(cosβ)
D.f(sinα)>f(cosβ)

【答案】D
【解析】解:由題意:可知f(x+2)=f(x), ∴f(x)是周期為2的函數(shù),
∵f(x)在[﹣3,﹣2]上為減函數(shù),
∴f(x)在[﹣1,0]上為減函數(shù),
又∵f(x)為偶函數(shù),根據(jù)偶函數(shù)對(duì)稱區(qū)間的單調(diào)性相反,
∴f(x)在[0,1]上為單調(diào)增函數(shù).
∵在銳角三角形中,π﹣α﹣β<
∴π﹣α﹣β ,即 ,
>α> ﹣β>0,
∴sinα>sin( )=cosβ;
∵f(x)在[0,1]上為單調(diào)增函數(shù).
所以f(sinα)>f(cosβ),
故選:D.
根據(jù)f(x+2)=f(x),所以函數(shù)的周期為2,在[﹣3,﹣2]上是減函數(shù),可得f(x)在[﹣1,0]上為減函數(shù),因?yàn)閒(x)為偶函數(shù),所以f(x)在[0,1]上為單調(diào)增函數(shù).在根據(jù)α,β是銳角三角形的兩個(gè)內(nèi)角,利用三角函數(shù)誘導(dǎo)公式化簡可得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】先后擲子(子的六個(gè)面上分別標(biāo)有1,2,3,4,5,6個(gè)點(diǎn))兩次,落在水平桌面后,記正面朝上的點(diǎn)數(shù)分別為x,y,設(shè)事件A為“x+y為偶數(shù)”,事件B為“x,y中有偶數(shù)且x≠y”,則概率P(B|A)=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=2,Sn-4Sn-1-2=0(n≥2,n∈Z).

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;

(Ⅱ)令bn=log2an,Tn{bn}的前n項(xiàng)和,求證 <2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市A,B兩所中學(xué)的學(xué)生組隊(duì)參加辯論賽,A中學(xué)推薦了3名男生、2名女生,B中學(xué)推薦了3名男生、4名女生,兩校所推薦的學(xué)生一起參加集訓(xùn).由于集訓(xùn)后隊(duì)員水平相當(dāng),從參加集訓(xùn)的男生中隨機(jī)抽取3人、女生中隨機(jī)抽取3人組成代表隊(duì).

(1)A中學(xué)至少有1名學(xué)生入選代表隊(duì)的概率;

(2)某場比賽前,從代表隊(duì)的6名隊(duì)員中隨機(jī)抽取4人參賽,設(shè)X表示參賽的男生人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=2sin(ωx+φ)(ω>0,﹣ <φ< )的部分圖象如圖所示,將f(x)的圖象向左平移 個(gè)單位后的解析式為(
A.y=2sin(2x﹣
B.y=2sin(2x+
C.y=2sin(2x)
D.y=2sin(2x+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)復(fù)數(shù)z=(x﹣1)+yi(x∈R,y≥0),若|z|≤1,則y≥x的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ABAD,ADBC,AD=6,BC=2AB=4,E,F分別在BC,AD上,EFAB.現(xiàn)將四邊形ABCD沿EF折起,使平面ABEF⊥平面EFDC.

(Ⅰ)若BE=1,是否在折疊后的線段AD上存在一點(diǎn)P,且,使CP∥平面ABEF?若存在,求出λ的值,若不存在,說明理由;

求三棱錐ACDF的體積的最大值,并求出此時(shí)二面角EACF的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第四象限,且z是方程x2﹣4x+5=0的根.
(1)求復(fù)數(shù)z;
(2)復(fù)數(shù)w=a﹣ (a∈R)滿足|w﹣z|<2 ,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知復(fù)數(shù)z=(2m2+3m﹣2)+(m2+m﹣2)i,(m∈R)根據(jù)下列條件,求m值.
(1)z是實(shí)數(shù);
(2)z是虛數(shù);
(3)z是純虛數(shù);
(4)z=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案