過(guò)點(diǎn)P(-1,0)作圓C:(x- 1)2 + (y- 2)2 = 1的兩切線(xiàn),設(shè)兩切點(diǎn)為A、B,圓心為C,則過(guò)A、B、C的圓方程是


  1. A.
    x2 + (y - 1)2 = 2
  2. B.
    x2 + (y - 1)2 = 1
  3. C.
    (x- 1)2 + y2 = 4
  4. D.
    (x- 1)2 + y2 = 1
A
因?yàn)镃(1,2),線(xiàn)段PC的中點(diǎn)M(0,1)就是所求圓的圓心,半徑為,所以過(guò)A、B、C的圓方程是
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年上虞市質(zhì)檢一理) 已知函數(shù)(常數(shù)t>0),過(guò)點(diǎn)P(1,0)作曲線(xiàn)y=f(x)的兩條切線(xiàn)PM、PN,切點(diǎn)分別為M、N.

   (I)求函數(shù)的單調(diào)遞增區(qū)間;

   (II)設(shè),試求函數(shù)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年咸陽(yáng)市一模) (14分)如圖,過(guò)點(diǎn)P(1,0)作曲線(xiàn)C: 的切線(xiàn),切點(diǎn)為,設(shè)點(diǎn)在x軸上的投影是點(diǎn);又過(guò)點(diǎn)作曲線(xiàn)C的切線(xiàn),切點(diǎn)為,設(shè)x軸上的投影是;…;依此下去,得到一系列點(diǎn),,…,,…,設(shè)點(diǎn)的橫坐標(biāo)為.

(Ⅰ)試求數(shù)列{}的通項(xiàng)公式;(用的代數(shù)式表示)

(Ⅱ)求證:

(Ⅲ)求證:(注:).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)P(-1,0)作圓C:(x - 1)2 + (y - 2)2 = 1的兩切線(xiàn),設(shè)兩切點(diǎn)為AB,圓心為C,則過(guò)A、BC的圓方程是

A.x2 + (y - 1)2 = 2                  B.x2 + (y - 1)2 = 1 

C.(x - 1)2 + y2 = 4                          D.(x - 1)2 + y2 = 1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆安徽合肥一六八中學(xué)高二上學(xué)期期中考試文數(shù)學(xué)卷(解析版) 題型:解答題

如圖,在直角坐標(biāo)系中,射線(xiàn)OA: x-y=0(x≥0),OB: x+2y=0(x≥0),過(guò)點(diǎn)P(1,0)作直線(xiàn)分別交射線(xiàn)OA、OB于A、B兩點(diǎn).

(1)當(dāng)AB中點(diǎn)為P時(shí),求直線(xiàn)AB的斜率

(2)當(dāng)AB中點(diǎn)在直線(xiàn)上時(shí),求直線(xiàn)AB的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆江西白鷺洲中學(xué)高二上學(xué)期第三次月考理科數(shù)學(xué)試題(解析版) 題型:解答題

在直角坐標(biāo)系中,射線(xiàn)OA: x-y=0(x≥0),

OB: x+2y=0(x≥0),過(guò)點(diǎn)P(1,0)作直線(xiàn)分別交射線(xiàn)OA、OBAB兩點(diǎn).

(1)當(dāng)AB中點(diǎn)為P時(shí),求直線(xiàn)AB的方程;

(2)當(dāng)AB中點(diǎn)在直線(xiàn)上時(shí),求直線(xiàn)AB的方程.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案