.(本小題滿分14分)
已知數(shù)列
,
,其中
是方程
的兩個根.
(1)證明:對任意正整數(shù)
,都有
;
(2)若數(shù)列
中的項都是正整數(shù),試證明:任意相鄰兩項的最大公約數(shù)均為1;
(3)若
,證明:
。
證明:(1)
是方程
的兩個根,
故對任意正整數(shù)
,
故
;
(2)由(1)與更相減損術可得:對任意正整數(shù)
,
故命題成立;
(3)
是方程
的兩個根且
,故
由
可得:
故
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分8分)計算
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
.(本題滿分12分)已知函數(shù)
(1)求
時
的取值范圍;
(2)若
且
對任意
成立;
(ⅰ)求證
是等比數(shù)列;
(ⅱ)令
,求證
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知數(shù)列
滿足:
,其中
為數(shù)列
的前
項和.
(1)試求數(shù)列
的通項公式;
(2)設
,數(shù)列
的前
項和為
,求證
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知{
an}是一個公差大于0的等差數(shù)列,且滿足
a3a6=55,
a2+
a7=16.
(1)求數(shù)列{
an}的通項公式;
(2)若數(shù)列{
an}和數(shù)列{
bn}滿足等式:
,求數(shù)列{
bn}的前
n項和S
n.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
) (本題滿分14分) 設等差數(shù)列{
an}的首項
a1為
a,前
n項和為
Sn.
(Ⅰ) 若
S1,
S2,
S4成等比數(shù)列,求數(shù)列{
an}的通項公式;
(Ⅱ) 證明:
n∈N*,
Sn,
Sn+1,
Sn+2不構成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知數(shù)列
的相鄰兩項
是關于
的方程
的兩根,且
(1)求證:數(shù)列
是等比數(shù)列;
(2)求數(shù)列
的前
項和
;
(3)若
對任意的
都成立,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知數(shù)列
的前
項和
,對于任意的
,都滿足
,
且
,則
等于( )
查看答案和解析>>