已知是函數(shù)圖象上的任意一點(diǎn),是該圖象的兩個端點(diǎn), 點(diǎn)滿足,(其中軸上的單位向量),若(為常數(shù))在區(qū)間上恒成立,則稱在區(qū)間上具有 “性質(zhì)”.現(xiàn)有函數(shù):

;        ②;     ③;    ④.

則在區(qū)間上具有“性質(zhì)”的函數(shù)為         .

 

【答案】

①②③④

【解析】

試題分析:①;顯然;

;直線AB的方程為:,設(shè)D點(diǎn)的橫坐標(biāo)為,則.所以具有T性質(zhì);

,直線AB的方程為:,設(shè)D點(diǎn)的橫坐標(biāo)為,則;

.直線AB的方程為:,設(shè)D點(diǎn)的橫坐標(biāo)為,則.

考點(diǎn):1、新定義;2、函數(shù)及重要不等式.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex,直線l的方程為y=kx+b.
(1)求過函數(shù)圖象上的任一點(diǎn)P(t,f(t))的切線方程;
(2)若直線l是曲線y=f(x)的切線,求證:f(x)≥kx+b對任意x∈R成立;
(3)若f(x)≥kx+b對任意x∈[0,+∞)成立,求實(shí)數(shù)k、b應(yīng)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:隨堂練1+2 講·練·測 高中數(shù)學(xué)·必修1(蘇教版) 蘇教版 題型:044

已知f(x)=x+的定義域?yàn)?0,+∞),且f(2)=2+,設(shè)P是函數(shù)圖象上的任一點(diǎn),過P分別作直線y=x和y軸的垂線,垂足分別為M、N.

(1)求a的值.

(2)問|PM|·|PN|是否為定值?若是,則求出該定值;若不是,請說明理由.

(3)設(shè)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=ex,直線l的方程為y=kx+b.
(1)求過函數(shù)圖象上的任一點(diǎn)P(t,f(t))的切線方程;
(2)若直線l是曲線y=f(x)的切線,求證:f(x)≥kx+b對任意x∈R成立;
(3)若f(x)≥kx+b對任意x∈[0,+∞)成立,求實(shí)數(shù)k、b應(yīng)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:惠州一模 題型:解答題

已知函數(shù)f(x)=ex,直線l的方程為y=kx+b.
(1)求過函數(shù)圖象上的任一點(diǎn)P(t,f(t))的切線方程;
(2)若直線l是曲線y=f(x)的切線,求證:f(x)≥kx+b對任意x∈R成立;
(3)若f(x)≥kx+b對任意x∈[0,+∞)成立,求實(shí)數(shù)k、b應(yīng)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省常州一中高三(下)期初數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=ex,直線l的方程為y=kx+b.
(1)求過函數(shù)圖象上的任一點(diǎn)P(t,f(t))的切線方程;
(2)若直線l是曲線y=f(x)的切線,求證:f(x)≥kx+b對任意x∈R成立;
(3)若f(x)≥kx+b對任意x∈[0,+∞)成立,求實(shí)數(shù)k、b應(yīng)滿足的條件.

查看答案和解析>>

同步練習(xí)冊答案