【題目】直三棱柱ABC-A1B1C1中,AB=AA1,∠CAB=.
(1)證明:CB1⊥BA1;
(2)已知AB=2,BC=,求三棱錐C1-ABA1的體積.
【答案】(1)證明詳見解析;(2)
【解析】試題分析:(1)連結AB1,則AC⊥BA1.,又∵AB=AA1,∴四邊形ABB1A1是正方形,∴BA1⊥AB1,由直線與平面垂直的判定定理可的BA1⊥平面CAB1,故CB1⊥BA1.(2)首先求出A1C1的值,由(1)知,A1C1⊥平面ABA1,即A1C1是三棱錐C1-ABA1的高,然后在求出△ABA1的面積,最后根據棱錐的體積公式求解即可.
試題解析:解:(1)證明:如圖,連結AB1,
∵ABC-A1B1C1是直三棱柱,∠CAB=,
∴AC⊥平面ABB1A1,故AC⊥BA1. 3分
又∵AB=AA1,∴四邊形ABB1A1是正方形,
∴BA1⊥AB1,又CA∩AB1=A.
∴BA1⊥平面CAB1,故CB1⊥BA1. 6分
(2)∵AB=AA1=2,BC=,∴AC=A1C1=1, 8分
由(1)知,A1C1⊥平面ABA1, 10分
∴VC1-ABA1=S△ABA1·A1C1=×2×1=. 12分
科目:高中數學 來源: 題型:
【題目】已知函數為奇函數,且相鄰兩對稱軸間的距離為.
(Ⅰ)當時,求的單調遞減區(qū)間;
(Ⅱ)將函數的圖象沿軸方向向右平移個單位長度,再把橫坐標縮短到原來的(縱坐標不變),
得到函數的圖象.當時,求函數的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知圓過坐標原點且圓心在曲線上.
(1)若圓分別與軸、軸交于點、(不同于原點),求證:的面積為定值;
(2)設直線與圓交于不同的兩點,且,求圓的方程;
(3)設直線與(2)中所求圓交于點、, 為直線上的動點,直線,與圓的另一個交點分別為,,且,在直線異側,求證:直線過定點,并求出定點坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】小王、小李兩位同學玩擲骰子(骰子質地均勻)游戲,規(guī)則:小王先擲一枚骰子,向上的點數記為;小李后擲一枚骰子,向上的點數記為.
(1)求能被 整除的概率.
(2)規(guī)定:若,則小王贏;若,則小李贏,其他情況不分輸贏.試問這個游戲規(guī)則公平嗎?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2cos2ωx+2sinωxcosωx(ω>0)的最小正周期為π.
(Ⅰ)求f()的值;
(Ⅱ)求函數f(x)的單調遞增區(qū)間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知x0,x0+是函數f(x)=cos2(wx﹣)﹣sin2wx(ω>0)的兩個相鄰的零點
(1)求的值;
(2)若對任意,都有f(x)﹣m≤0,求實數m的取值范圍.
(3)若關于的方程在上有兩個不同的解,求實數的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com