如圖(1),等腰直角三角形的底邊,點在線段上,,現(xiàn)將沿折起到的位置(如圖(2)).

(Ⅰ)求證:;
(Ⅱ)若,直線與平面所成的角為,求長.
(Ⅰ)詳見解析(Ⅱ).

試題分析:(Ⅰ)要證線線垂直,可先考慮純線面垂直,要證線面垂直,先找出圖中的線線垂直,使結論得證;(Ⅱ)為方便利用直線與平面所成的角為,可建立空間直角坐標系,利用空間向量相關計算公式建立關于長度的方程,解之即可.
試題解析:(Ⅰ),,,平面
,;
(Ⅱ),
分別以所在直線為軸,軸,軸建立空間直角坐標系(如圖)

,則,
可得 ,
設平面的法向量,令,可得,因此是平面的一個法向量,,與平面所成的角為,即,
解之得:,或(舍),因此可得的長為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在中,,,點在邊上,設,過點,作。沿翻折成使平面平面;沿翻折成使平面平面

(1)求證:平面;
(2)是否存在正實數(shù),使得二面角的大小為?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題12分)如圖:四棱錐P—ABCD中,底面ABCD

是矩形,PA⊥底面ABCD,PA=AB=1,AD=,點F是PB的中點,點E在邊BC上移動.
(1)證明:無論點E在BC邊的何處,都有PE⊥AF;
(2)當BE等于何值時,PA與平面PDE所成角的大小為45°. 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知A(1,0,0),B(0,1,0),C(0,0,1),則平面ABC的一個單位法向量是(  )
A.(,,-)B.(,-,)C.(-,,)D.(-,-,-)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,在空間直角坐標系中有直三棱柱ABC­A1B1C1,CACC1=2CB,則直線BC1與直線AB1夾角的余弦值為(  ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如右圖,正方體的棱長為1.應用空間向量方法求:

⑴ 求的夾角

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

空間直角坐標系中,點(-2, 1, 9)關于x軸對稱的點的坐標是
A.(-2, 1, 9)B.(-2, -1, -9)C.(2, -1, 9)D.( 2, 1, -9)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱錐P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PCAC.

(Ⅰ)求證:PCAB;
(Ⅱ)求直線BC與平面APB所成角的正弦值
(Ⅲ)求點C到平面APB的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知空間四邊形ABCD中,O是空間中任意一點,點M在OA上,且OM=2MA,N為BC中點,則=( )
A.B.
C.D.

查看答案和解析>>

同步練習冊答案