已知函數(shù)數(shù)學(xué)公式,若函數(shù)f(x)的圖象上點(diǎn)P(1,m)處的切線方程為3x-y+b=0,則m的值為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    -數(shù)學(xué)公式
  4. D.
    -數(shù)學(xué)公式
C
分析:由,知f′(x)=2x2-4ax-3,由函數(shù)f(x)的圖象上點(diǎn)P(1,m)處的切線方程為3x-y+b=0,解得a=-1.由此能求出m.
解答:∵
∴f′(x)=2x2-4ax-3,
∴f′(1)=2-4a-3=-4a-1,
∵函數(shù)f(x)的圖象上點(diǎn)P(1,m)處的切線方程為3x-y+b=0,
∴-4a-1=3,a=-1.
∴f(x)=,
∴m=f(1)==-
故選C.
點(diǎn)評:本題考查利用導(dǎo)數(shù)求曲線上某點(diǎn)處的切線方程的應(yīng)用,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-2|,g(x)=-|x+3|+m
(1)解關(guān)于x的不等式f(x)-1<0;
(2)若函數(shù)f(x)的圖象恒在函數(shù)g(x)圖象的上方,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+lnx-ax(a∈R).
(1)若a=3,求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若函數(shù)f(x)在(0,1)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)在(2)的結(jié)論下,設(shè)g(x)=e2x+|ex-a|,x∈[0,ln3],求函數(shù)g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2x+alnx(a∈R).
(1)當(dāng)時(shí)a=-4時(shí),求f(x)的最小值;
(2)若函數(shù)f(x)在區(qū)間(0,1)上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-alnx,g(x)=x-a
x

(1)若a∈R,求函數(shù)f(x)的極值;
(2)若函數(shù)f(x)在(1,2)上是增函數(shù),g(x)在(0,1)上為減函數(shù),求f(x),g(x)的表達(dá)式;
(3)對于(2)中的f(x),g(x),求證:當(dāng)x>0時(shí),方程f(x)=g(x)+2有唯-解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(2-a)(x-1)-2lnx.(I)當(dāng)a=1時(shí),求f(x)的極值;(II)若函數(shù)f(x)在(0,
12
)
上恒大于零,求實(shí)數(shù)a的最小值.

查看答案和解析>>

同步練習(xí)冊答案