【題目】已知一個(gè)圓經(jīng)過直線l:2x+y+4=0與圓C:x2+y2+2x﹣4y=0的兩個(gè)交點(diǎn),并且有最小面積,則此圓的方程為 .
【答案】x2+y2+ x﹣ y+ =0
【解析】解:可設(shè)圓的方程為x2+y2+2x﹣4y+λ(2x+y+4)=0,即x2+y2+2(1+λ)x+(λ﹣4)y+4λ=0,
此時(shí)圓心坐標(biāo)為(﹣1﹣λ, ),
顯然當(dāng)圓心在直線2x+y+4=0上時(shí),圓的半徑最小,從而面積最小,
∴2(﹣1﹣λ)+ +4=0,
解得:λ= ,
則所求圓的方程為:x2+y2+ x﹣ y+ =0.
故答案為:x2+y2+ x﹣ y+ =0.
設(shè)出所求圓的方程為x2+y2+2x﹣4y+λ(2x+y+4=0)=0,找出此時(shí)圓心坐標(biāo),當(dāng)圓心在直線2x+y+4=0上時(shí),圓的半徑最小,可得此時(shí)面積最小,把表示出的圓心坐標(biāo)代入2x+y+4=0中,得到關(guān)于λ的方程,求出方程的解得到λ的值,進(jìn)而確定出所求圓的方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】Sn為等差數(shù)列{an}的前n項(xiàng)和,且a1=1,S7=28,記bn=[lgan],其中[x]表示不超過x的最大整數(shù),如[0.9]=0,[lg99]=1. (Ⅰ)求b1 , b11 , b101;
(Ⅱ)求數(shù)列{bn}的前1000項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論中,正確的是( )
A.冪函數(shù)的圖象都通過點(diǎn)(0,0),(1,1)
B.冪函數(shù)的圖象可以出現(xiàn)在第四象限
C.當(dāng)冪指數(shù)α取1,3, 時(shí),冪函數(shù)y=xα是增函數(shù)
D.當(dāng)冪指數(shù)α=-1時(shí),冪函數(shù)y=xα在定義域上是減函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且 bcosA=asinB.
(1)求角A的大;
(2)若a=6,△ABC的面積是9 ,求三角形邊b,c的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為方便市民休閑觀光,市政府計(jì)劃在半徑為200米,圓心角為120°的扇形廣場(chǎng)內(nèi)(如圖所示),沿△ABC邊界修建觀光道路,其中A、B分別在線段CP、CQ上,且A、B兩點(diǎn)間距離為定長 米.
(1)當(dāng)∠BAC=45°時(shí),求觀光道BC段的長度;
(2)為提高觀光效果,應(yīng)盡量增加觀光道路總長度,試確定圖中A、B兩點(diǎn)的位置,使觀光道路總長度達(dá)到最長?并求出總長度的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐D﹣ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E為BC點(diǎn),F(xiàn)棱AC上,且AF=3FC.
(1)求三棱錐D﹣ABC的體積;
(2)求證:AC⊥平面DEF;
(3)若M為DB中點(diǎn),N在棱AC上,且CN= CA,求證:MN∥平面DEF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的三內(nèi)角A、B、C成等差數(shù)列,sinA、sinB、sinC成等比數(shù)列,則這個(gè)三角形的形狀是( )
A.直角三角形
B.鈍角三角形
C.等腰直角三角形
D.等邊三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A,B,C三點(diǎn)滿足 = + . (Ⅰ)求證:A,B,C三點(diǎn)共線;
(Ⅱ)已知A(1,cosx),B(1+sinx,cosx),x∈[0, ],f(x)= ﹣(2m2+ )| |的最小值為 ,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,△ABC為正三角形,AB⊥AD,AC⊥CD,PA⊥平面ABCD,PC與平面ABCD所成角為45°
(1)若E為PC的中點(diǎn),求證:PD⊥平面ABE;
(2)若CD= ,求點(diǎn)B到平面PCD的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com