【題目】已知命題P:函數(shù)f(x)=log2m(x+1)是增函數(shù);命題Q:x∈R,x2+mx+1≥0.
(1)寫出命題Q的否命題¬Q;并求出實數(shù)m的取值范圍,使得命題¬Q為真命題;
(2)如果“P∨Q”為真命題,“P∧Q”為假命題,求實數(shù)m的取值范圍
【答案】
(1)解:Q:x0∈R,x02+mx0+1<0.
若Q為真命題,則△=m2﹣4>0,解得:m<﹣2,或m>2.
故所求實數(shù)m的取值范圍為:(﹣∞,﹣2)∪(2,+∞).
(2)解:若函數(shù)f(x)=log2m(x+1)是增函數(shù),則 2m>1, .
又x∈R,x2+mx+1≥0為真命題時,由△=m2﹣4≤0,
求得m的取值范圍為B={m|﹣2≤m≤2}.
由“P∨Q”為真命題,“P∧Q”為假命題,故命題P、Q中有且僅有一個真命題.
當P真Q假時,實數(shù)m的取值范圍為:
.
當P假Q真時,實數(shù)m的取值范圍為:
;
綜上可知實數(shù)m的取值范圍:[﹣2, ]∪(2,+∞).
【解析】(1)否命題Q,就是把命題Q的條件和結論都否定,聯(lián)系對應二次函數(shù)圖象,由△=m2﹣4>0,解得m的
取值范圍.(2)命題P和命題Q中,一個為真命題,一個為假命題,分命題P是真命題且命題Q是假命題、命題P是
假命題且命題Q是真命題,兩種情況,計算可得答案.
【考點精析】通過靈活運用交、并、補集的混合運算和對數(shù)函數(shù)的單調性與特殊點,掌握求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區(qū)分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設條件,結合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結合的思想方法;過定點(1,0),即x=1時,y=0;a>1時在(0,+∞)上是增函數(shù);0>a>1時在(0,+∞)上是減函數(shù)即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的幾何體中,平面 平面 ,四邊形 為平行四邊形, , , , .
(1)求證: 平面 ;
(2)求 到平面 的距離;
(3)求三棱錐 的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在正方體ABCD-A′B′C′D′中:
(1)求二面角D′-AB-D的大。
(2)若M是C′D′的中點,求二面角M-AB-D的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方體ABCD-A1B1C1D1的棱長為a,M為BD1的中點,N在A1C1上,且滿足|A1N|=3|NC1|.
(1)求MN的長;
(2)試判斷△MNC的形狀.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】知f(x)=xlnx,g(x)=﹣x2+ax﹣3.
(1)求函數(shù)f(x)在區(qū)間[t,t+2](t>0)上的最小值;
(2)對一切實數(shù)x∈(0,+∞),2f(x)≥g(x)恒成立,求實數(shù)a的取值范圍;
(3)證明對一切x∈(0,+∞),lnx> 恒成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖正方形的邊長為,已知,將沿邊折起,折起后點在平面上的射影為點,則翻折后的幾何體中有如下描述:
①與所成角的正切值是;
②∥;
③的體積是;
④平面⊥平面;
⑤直線與平面所成角為.
其中正確的有 .(填寫你認為正確的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設A(n)表示正整數(shù)n的個位數(shù),an=A(n2)﹣A(n),A為數(shù)列{an}的前202項和,函數(shù)f(x)=ex﹣e+1,若函數(shù)g(x)滿足f[g(x)﹣ ]=1,且bn=g(n)(n∈N*),則數(shù)列{bn}的前n項和為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足f(x﹣1)的對稱軸為x=1,f(x+1)= (f(x)≠0),且在區(qū)間(1,2)上單調遞減,已知α、β是鈍角三角形中兩銳角,則f(sinα)和f(cosβ)的大小關系是( )
A.f(sinα)>f(cosβ)
B.f(sinα)<f(cosβ)
C.f(sinα)=f(cosβ)
D.以上情況均有可能
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com