已知函數(shù)f(x)=x3-x2-x.
(Ⅰ)求函數(shù)f(x)在點(diǎn)(2,2)處的切線方程;
(Ⅱ)求函數(shù)f(x)的極大值和極小值.
(Ⅰ)由已知得f′(x)=3x2-2x-1
又f′(2)=7所求切線方程是7x-y-12=0
(Ⅱ)因為f′(x)=3x2-2x-1⇒f′(x)=0⇒x1=1,x2=-
1
3

又函數(shù)f(x)的定義域是所有實(shí)數(shù),則x變化時,f′(x)的變化情況如下表:

所以當(dāng)x=-
1
3
時,函數(shù)f(x)取得極大值為
5
27
;
當(dāng)x=1時,函數(shù)f(x)取得極小值為-1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=x3的切線的斜率等于1,則這樣的切線有( 。
A.1條B.2條C.3條D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知
lim
n→∞
2n2
2+n
-an)=b,則常數(shù)a、b的值分別為( 。
A.a(chǎn)=2,b=-4B.a(chǎn)=-2,b=4C.a(chǎn)=
1
2
,b=-4
D.a(chǎn)=-
1
2
,b=
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=lnx+a(x2-x)
(1)若a=-1,求證f(x)有且僅有一個零點(diǎn);
(2)若對于x∈[1,2],函數(shù)f(x)圖象上任意一點(diǎn)處的切線的傾斜角都不大于
π
4
,求實(shí)數(shù)a的取值范圍;
(3)若f(x)存在單調(diào)遞減區(qū)間,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

點(diǎn)M(m,4)m>0為拋物線x2=2py(p>0)上一點(diǎn),F(xiàn)為其焦點(diǎn),已知|FM|=5,
(1)求m與p的值;
(2)以M點(diǎn)為切點(diǎn)作拋物線的切線,交y軸與點(diǎn)N,求△FMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=lnx-ax+
1-a
x
-1

(Ⅰ)當(dāng)a=1時,過原點(diǎn)的直線與函數(shù)f(x)的圖象相切于點(diǎn)P,求點(diǎn)P的坐標(biāo);
(Ⅱ)當(dāng)0<a<
1
2
時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)a=
1
3
時,設(shè)函數(shù)g(x)=x2-2bx-
5
12
,若對于?x1∈(0,e],?x2∈[0,1]使f(x1)≥g(x2)成立,求實(shí)數(shù)b的取值范圍.(e是自然對數(shù)的底,e<
3
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=mx-
m
x
,g(x)=2lnx
(1)當(dāng)m=2時,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)當(dāng)m=1時,證明方程f(x)=g(x)有且僅有一個實(shí)數(shù)根;
(3)若x∈(1,e]時,不等式f(x)-g(x)<2恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=
eax
x2+1
,a∈R

(Ⅰ)當(dāng)a=1時,求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(Ⅱ)求函數(shù)f(x)單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知三次函數(shù)f(x)的導(dǎo)函數(shù)f′(x)=3x2-3ax,f(0)=b,(a、b實(shí)數(shù)).若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2,1,且1<a<2,求函數(shù)f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊答案