已知定義在R上的奇函數(shù)f(x),當x>0時f(x)=x,則當x≤0時f(x)的表達式為
 
考點:函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:首先,根據(jù)條件,得到f(0)=0,然后,令x<0,利用奇函數(shù)的性質(zhì),得到此時的解析式f(x)=x,從而得到結(jié)果.
解答: 解:∵f(x)在R上的奇函數(shù),
∴f(0)=0,
設(shè)x<0,
∴-x>0.
∴f(-x)=-x,
∵f(-x)=-f(x),
∴f(x)=x,
∴x≤0時f(x)的表達式為f(x)=x.
故答案為:f(x)=x.
點評:本題主要考查了奇函數(shù)的性質(zhì),屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|1-x|-|2+x|.
(Ⅰ)求f(x)的最大值;
(Ⅱ)|2t-1|≥f(x)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義min{a,b}=
b,a≥b
a,a<b
,設(shè)實數(shù)x,y滿足
|x|≤2
|y|≤2
,則z=min{3x+2y,2x+y}的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)正實數(shù)a,b,c滿足a+2b+c=1,則
1
a+b
+
9(a+b)
b+c
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)展(x-
2
x
6開式中x3的系數(shù)為A,二項式系數(shù)為B,則A:B=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在實數(shù)范圍內(nèi),不等式|2x-1|+|x+1|≥5x的解集為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列結(jié)論
①若a,b∈[0,1],則不等式a2+b2
1
4
成立的概率是
π
4

②函數(shù)f(a)=
1
0
(6ax2-a2x)dx的最大值為2;
③已知隨機變量ξ~N(2,δ2),且P(ξ≤4)=0.84,則P(0≤ξ≤2)=0.16;
④定義在R上的奇函數(shù)f(x),滿足f(x+2)=-f(x),則f(6)的值為0.
其中,不正確的結(jié)論是
 
.(寫出所有不正確結(jié)論的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

i是虛數(shù)單位,復數(shù)
2-i
1-2i
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若不等式2kx2+kx-
3
8
≥0的解集為空集,則實數(shù)k的取值范圍是( 。
A、(-3,0)
B、(-∞,-3)
C、(-3,0]
D、(-∞,-3)∪(0,+∞)

查看答案和解析>>

同步練習冊答案