設z=1-i復數(shù),則復數(shù)1+z2在復平面內(nèi)所對應的點位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限
考點:復數(shù)的代數(shù)表示法及其幾何意義
專題:數(shù)系的擴充和復數(shù)
分析:利用復數(shù)的運算法則、幾何意義即可得出.
解答: 解:∵z=1-i復數(shù),
∴復數(shù)1+z2=1+(1-i)2=1-2i在復平面內(nèi)所對應的點(1,-2)位于第四象限.
故選:D.
點評:本題考查了復數(shù)的運算法則、幾何意義,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖半圓O的直徑為2,A點在直徑的延長線上,且OA=2,B點為半圓周上的任意一點,以AB為邊作一個等邊△ABC,問B點在什么位置時,四邊形OABC的面積最大?并求出此時的四邊形面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若點(4,a)在y=x
1
2
的圖象上,則tan
a
6
π的值為(  )
A、0
B、
3
3
C、1
D、
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合U=R,M={x|-1<x<1},∁UN={x|0<x<2},求N,M∩(∁UN),M∪N.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=1,an-an-1=3(n>1),則a10=( 。
A、27B、28C、29D、30

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

i是虛數(shù)單位,集合A={i,t2,
1
i
}
,則A∩R的元素個數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

使
1-cosa
1+cosa
=
cosa-1
sina
成立的a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F1,F(xiàn)2分別為橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右兩個焦點;
①若橢圓C上的點A(1,
3
2
)到F1,F(xiàn)2兩點的距離之和等于4,寫出橢圓C的方程;
②設K是①中所得橢圓上的動點,求線段F1K的中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三棱錐P-ABC中,PA、PB、PC兩兩互相垂直,且PA=PB=PC=2,則三棱錐P-ABC的外接球的球面面積是
 

查看答案和解析>>

同步練習冊答案