已知,函數(shù)的零點(diǎn)分別為,函數(shù)的零點(diǎn)分別為,則的最小值為(  )
A.1B.C.D.3
B

試題分析:由題知,,,.
,  又
  故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖給出了一種植物生長時間t(月)與枝數(shù)y(枝)之間的散點(diǎn)圖.請你根據(jù)此判斷這種植物生長的時間與枝數(shù)的關(guān)系用下列哪個函數(shù)模型擬合最好?(  )
A.指數(shù)函數(shù):y=2tB.對數(shù)函數(shù):
C.冪函數(shù):y=t3D.二次函數(shù):y=2t2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

養(yǎng)路處建造圓錐形倉庫用于貯藏食鹽(供融化高速公路上的積雪之用),已建的倉庫的底面直徑為,高,養(yǎng)路處擬建一個更大的圓錐形倉庫,以存放更多食鹽,現(xiàn)有兩種方案:一是新建的倉庫的底面直徑比原來大(高不變);二是高度增加(底面直徑不變)。
(1)分別計算按這兩種方案所建的倉庫的體積;
(2)分別計算按這兩種方案所建的倉庫的表面積(地面無需用材料);
(3)哪個方案更經(jīng)濟(jì)些?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)時取得最大值,在時取得最小值,則實數(shù)的取值范圍為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)的定義域為R,若存在常數(shù)M>0,使對 一切實數(shù)x均成 立,則稱為“倍約束函數(shù)”,現(xiàn)給出下列函數(shù):①:②:③;④  ⑤是定義在實數(shù)集R上的奇函數(shù),且
對一切均有,其中是“倍約束函數(shù)”的有(    )
A.1個 B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)為實常數(shù)).
(1)若函數(shù)在區(qū)間上是增函數(shù),試用函數(shù)單調(diào)性的定義求實數(shù)的取值范圍;
(2)設(shè),若不等式有解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列所給4個圖象中,與所給3件事吻合最好的順序為(   )

(1)我離開家不久,發(fā)現(xiàn)自己把作業(yè)本忘在家里了,于是立刻返回家里取了作業(yè)本再上學(xué);
(2)我騎著車一路以常速行駛,只是在途中遇到一次交通堵塞,耽擱了一些時間;
(3)我出發(fā)后,心情輕松,緩緩行進(jìn),后來為了趕時間開始加速。
A.(1)(2)(4)B.(4)(2)(3)C.(4)(1)(3)D.(4)(1)(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給出下列四個命題:
①若,則的圖象關(guān)于對稱;
②若,則的圖象關(guān)于y軸對稱;
③函數(shù);
④函數(shù)y軸對稱。正確命題的序號是     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若不等式的解集為空集,則實數(shù)m的取值范圍是       .

查看答案和解析>>

同步練習(xí)冊答案