,(nÎN*)。試求:

1f(1)+f(2)++f(102)的值;

2f(1)×f(3)×f(5)××f(101)的值。

 

答案:
解析:

1)由,∴ f(1)+f(2)++f(102)=[f(1)++f(12)]+[f(13)++f(24)]++[f(85)++f(96)]+[f(97)++f(102)]=f(97)+f(98)++f(102)=f(1)+f(2)++f(6)=

2)略解:f(1)×f(3)×f(5)f(101)=[f(1)×f(3)f(11)][f(13)×f(15)f(23)][f(85)×f(87)f(95)×f(97)×f(99)×f(101)]=

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年赤峰二中模擬理)設(shè)函數(shù)f(x) = lnx - ax + 1.

(Ⅰ) 若函數(shù)f(x)為單調(diào)函數(shù), 求實(shí)數(shù)a 的取值范圍;

(Ⅱ) 當(dāng)a > 0時(shí), 恒有f(x) £ 0, 求a的取值范圍;

(Ⅲ) 證明: ( n Î N, n ³ 2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010屆廣東華南師范大學(xué)附屬中學(xué)高三模擬數(shù)學(xué)試題(三) 題型:解答題

(滿分12分)某專賣店銷售一新款服裝,日銷售量(單位為件)f (n) 與時(shí)間n(1≤n≤30、nÎ N*)的函數(shù)關(guān)系如下圖所示,其中函數(shù)f (n) 圖象中的點(diǎn)位于斜率為 5 和-3 的兩條直線上,兩直線交點(diǎn)的橫坐標(biāo)為m,且第m天日銷售量最大.
(Ⅰ)求f (n) 的表達(dá)式,及前m天的銷售總數(shù);
(Ⅱ)按以往經(jīng)驗(yàn),當(dāng)該專賣店銷售某款服裝的總數(shù)超過 400 件時(shí),市面上會(huì)流行該款服裝,而日銷售量連續(xù)下降并低于 30 件時(shí),該款服裝將不再流行.試預(yù)測(cè)本款服裝在市面上流行的天數(shù)是否會(huì)超過 10 天?請(qǐng)說明理由.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江陜西省高一數(shù)學(xué)必修模塊5卷 題型:選擇題

若1+2+22+……+2n>128,nÎN*,則n的最小值為          

A.  6        B.  7       C.  8        D.  9

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年海南省高三上學(xué)期第二次月考理科數(shù)學(xué)卷 題型:選擇題

已知數(shù)列 {an}(n Î N)中,a1 = 1,an+1 = ,則an 為:

A.2n-1       B.2n + 1       C.     D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年廣東省高考沖刺強(qiáng)化訓(xùn)練試卷三文科數(shù)學(xué) 題型:解答題

(本小題滿分14分)已知函數(shù),設(shè)曲線yfx)在點(diǎn)(xn,fxn))處的切線與x軸的交點(diǎn)為(xn+1,0)(n Î N *),x1=4.

(Ⅰ)用表示xn+1;

(Ⅱ)記an=lg,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xn}的通項(xiàng)公式;

(Ⅲ)若bnxn-2,試比較的大小.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案