雙曲線(xiàn)E的漸近線(xiàn)方程為y=±
4
3
x
,且經(jīng)過(guò)點(diǎn)(2
3
,
4
3
3
)

(1)求雙曲線(xiàn)E的方程;
(2)F1,F(xiàn)2為雙曲線(xiàn)E的兩個(gè)焦點(diǎn),P為雙曲線(xiàn)上一點(diǎn),若|PF1|•|PF2|=32,求∠F1PF2的大。
(1)設(shè)雙曲線(xiàn)方程為
x2
9
-
y2
16
(λ≠0),
代入點(diǎn)(2
3
4
3
3
)
,可得
12
9
-
3
9

∴λ=1,
∴雙曲線(xiàn)E的方程為
x2
9
-
y2
16
=1

(2)由
x2
9
-
y2
16
=1
得c2=25,
∴4c2=100
設(shè)|PF1|=d1,|PF2|=d2,則|d1-d2|=6…①
由已知條件:d1•d2=32…②
由①、②得,d12+d22=100
在△F1PF2中,由余弦定理得,cos∠F1PF2=
d12+d22-4c2
2d1d2
=0
∴∠F1PF2=90°
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知點(diǎn)P(a,b),A(x1,y1),B(x2,y2)均在拋物線(xiàn)y2=2px(p>0)上,PA,PB與x軸分別交于C,D兩點(diǎn),且PC=PD,則y1+y2的值為…(  )
A.-2aB.2bC.2pD.-2b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(理科)一動(dòng)圓過(guò)定點(diǎn)P(0,1),且與定直線(xiàn)l:y=-1相切.
(1)求動(dòng)圓圓心C的軌跡方程;
(2)若(1)中的軌跡上兩動(dòng)點(diǎn)記為A(x1,y1),B(x2,y2),且x1x2=-16.
①求證:直線(xiàn)AB過(guò)一定點(diǎn),并求該定點(diǎn)坐標(biāo);
②求
1
|PA|
+
1
|PB|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
C:的左右焦點(diǎn)為F1,F(xiàn)2,離心率為e,直線(xiàn)l:y=ex+a與x軸、y軸分別交于點(diǎn)A、B,M是直線(xiàn)l與橢圓C的一個(gè)公共點(diǎn),且
AM
=
3
4
AB

(1)計(jì)算橢圓的離心率e
(2)若直線(xiàn)l向右平移一個(gè)單位后得到l′,l′被橢圓C截得的弦長(zhǎng)為
5
4
,則求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知雙曲線(xiàn)
x2
a2
-
y2
b2
=1(b>a>0)
,O為坐標(biāo)原點(diǎn),離心率e=2,點(diǎn)M(
5
,
3
)
在雙曲線(xiàn)上.
(1)求雙曲線(xiàn)的方程;
(2)若直線(xiàn)l與雙曲線(xiàn)交于P,Q兩點(diǎn),且
OP
OQ
=0
.問(wèn):
1
|OP|2
+
1
|OQ|2
是否為定值?若是請(qǐng)求出該定值,若不是請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)拋物線(xiàn)y2=8x的準(zhǔn)線(xiàn)與x軸交于點(diǎn)Q,若過(guò)Q點(diǎn)的直線(xiàn)l與拋物線(xiàn)有公共點(diǎn),求直線(xiàn)l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知點(diǎn)P(2,1),若拋物線(xiàn)y2=4x的一條弦AB恰好是以P為中點(diǎn),則弦AB所在直線(xiàn)方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,雙曲線(xiàn)
x2
a2
-
y2
b2
=1
兩漸近線(xiàn)為l1、l2,過(guò)橢圓C的右焦點(diǎn)F作直線(xiàn)l,使l⊥l1,又設(shè)l與l2交于點(diǎn)P,l與C兩交點(diǎn)自上而下依次為A、B;
(1)當(dāng)l1與l2夾角為
π
3
,雙曲線(xiàn)焦距為4時(shí),求橢圓C的方程及其離心率;
(2)若
FA
AP
,求λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線(xiàn)C:y2=8x,O為坐標(biāo)原點(diǎn),動(dòng)直線(xiàn)l:y=k(x+2)與拋物線(xiàn)C交于不同兩點(diǎn)A,B
(1)求證:
OA
OB
為常數(shù);
(2)求滿(mǎn)足
OM
=
OA
+
OB
的點(diǎn)M的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案