已知拋物線,過點(diǎn)作一直線交拋物線于兩點(diǎn),試求弦中點(diǎn)的軌跡方程.
設(shè)弦的中點(diǎn),并設(shè),
在拋物線上,
兩式相減得
,
.              ①
,.        ②
由①代入②,整理得,即
,此時(shí)的中點(diǎn)為,也在拋物線上,
所求軌跡方程為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直線與雙曲線的右支交于不同的兩點(diǎn)
(1)求實(shí)數(shù)的取值范圍;
(2)是否存在實(shí)數(shù),使得以線段為直徑的圓經(jīng)過雙曲線的右焦點(diǎn)?若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓,定點(diǎn),問過點(diǎn)的直線的斜角在什么范圍內(nèi)取值時(shí),這條直線與圓:(1)相切,(2)相交,(3)相離,并寫出過點(diǎn)的切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓,點(diǎn)為坐標(biāo)原點(diǎn).
(1)若圓與直線相切時(shí),求中點(diǎn)的軌跡方程;
(2)若圓與相切時(shí),且面積最小,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上,斜率為的直線交兩點(diǎn),若,且以為直徑的圓經(jīng)過原點(diǎn),求直線和拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

內(nèi)有1點(diǎn),過作直角交圓于,求動(dòng)弦中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)圓O1和圓O2是兩個(gè)定圓,動(dòng)圓P與這兩個(gè)定圓都相切,則圓P的圓心軌跡不可能是(    )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)直角梯形ABCD中, ∠DAB=90°,AD//BC,
AB="2," AD=, BC=,橢圓E以A,B為焦點(diǎn)且經(jīng)過點(diǎn)D.  (1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求橢圓E的方程;  (2)若點(diǎn)Q滿足:,問是否存在不平行AB,的直線與橢圓E交于M、N兩點(diǎn).且|MQ|=|NQ|.若存在,求直線的斜率的取值范圍,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題


A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案