(本小題滿分12分)已知數(shù)列為等差數(shù)列,且
(1)求數(shù)列的通項(xiàng)公式;
(2)證明….
(1);(2)證明:
所以……
解析試題分析:(1)設(shè)等差數(shù)列的公差為d,
由得即d=1; …………3分
所以即 …………6分
(2)證明: …………8分
所以……
…………12分
考點(diǎn):本題考查了數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式的運(yùn)用
點(diǎn)評:高考中中的數(shù)列解答題考查的的熱點(diǎn)為求數(shù)列的通項(xiàng)公式、等差(比)數(shù)列的性質(zhì)及數(shù)列的求和問題.因此在高考復(fù)習(xí)的后期,要特別注意加強(qiáng)對由遞推公式求通項(xiàng)公式、求有規(guī)律的非等差(比)數(shù)列的前n項(xiàng)和等的專項(xiàng)訓(xùn)練.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列的前項(xiàng)和為,且方程有一個根為,.
(1)證明:數(shù)列是等差數(shù)列;
(2)設(shè)方程的另一個根為,數(shù)列的前項(xiàng)和為,求的值;
(3)是否存在不同的正整數(shù),使得,,成等比數(shù)列,若存在,求出滿足條件的,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知為等比數(shù)列,;為等差數(shù)列的前n項(xiàng)和,.
(1) 求和的通項(xiàng)公式;
(2) 設(shè),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知數(shù)列的前項(xiàng)和為,對一切正整數(shù),點(diǎn)都在函數(shù)的圖像上.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知數(shù)列的前項(xiàng)和為滿足:(為常數(shù),且)
(1)若,求數(shù)列的通項(xiàng)公式
(2)設(shè),若數(shù)列為等比數(shù)列,求的值.
(3)在滿足條件(2)的情形下,設(shè),數(shù)列前項(xiàng)和為,求證
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
已知數(shù)列滿足,數(shù)列滿足.
(1)求證:數(shù)列是等差數(shù)列;
(2)設(shè),求滿足不等式的所有正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)設(shè)數(shù)列的前項(xiàng)和為.已知,,.
(Ⅰ)設(shè),求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)數(shù)列前項(xiàng)和為,.
(1)求證:數(shù)列為等比數(shù)列;
(2)設(shè),數(shù)列前項(xiàng)和為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列{}中,,并且對任意都有成立,令.
(Ⅰ)求數(shù)列{}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{}的前n項(xiàng)和為,證明:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com