(本題13分)
如圖,在四棱錐中,平面,底面是菱形,.分別是的中點(diǎn).

(1) 求證:
(2) 求證:.

(1)先證,根據(jù)面面垂直的性質(zhì)定理可知
(2)先證FG//AE,且FG=AE,再證AG//EF,根據(jù)線面平行的判定定理可證.

解析試題分析:(1)在菱形ABCD中,所以,AB=BD,
因?yàn)镼是AD的中點(diǎn),
所以,且,
又因?yàn)椋矫鍼AD平面ABCD,平面PAD平面ABCD=AD,
所以.                                                 ……6分
(2)取PD中點(diǎn)G,連接AG,F(xiàn)G,
因?yàn)镋、F分別是AB,PC中點(diǎn),
所以FG//AE,且FG=AE,
所以,四邊形AEFG為平行四邊形,所以,AG//EF
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7a/a/rmrdg1.png" style="vertical-align:middle;" />
所以。                                               ……13分
考點(diǎn):本小題主要考查線面垂直和線面平行的證明,考查學(xué)生的空間想象能力和推理能力.
點(diǎn)評(píng):要證明線面垂直和線面平行,要緊扣相應(yīng)的定理的條件,定理中的條件要一一列出來(lái),缺一不可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
在四棱柱中,底面是直角梯形,AB∥CD,∠ABC=,AB=PB=PC=BC=2CD=2,平面PBC⊥平面ABCD

(1)求證:AB⊥平面PBC
(2)求三棱錐C-ADP的體積
(3)在棱PB上是否存在點(diǎn)M使CM∥平面PAD?
若存在,求的值。若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,長(zhǎng)方體中,,,點(diǎn)上,且

(Ⅰ)證明:平面;
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在三棱錐中,,,中點(diǎn),中點(diǎn),且為正三角形.

(1)求證:平面.
(2)求證:平面⊥平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分10分) 如圖,P—ABCD是正四棱錐,是正方體,其中 

(1)求證:;
(2)求平面PAD與平面所成的銳二面角的余弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐P-ABCD中,底面為直角梯ABCD,AD∥BC,∠BAD=90O,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分別為PC,PB的中點(diǎn).
(1)求證:PB⊥DM;
(2)求CD與平面ADMN所成角的正弦值;
(3)在棱PD上是否存在點(diǎn)E,PE∶ED=λ,使得二面角C-AN-E的平面角為60o.存在求出λ值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)在正四棱柱ABCD-A1B1C1D1中,E為CC1的中點(diǎn).

(1)求證:AC1∥平面BDE;(2)求異面直線A1E與BD所成角。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)
如圖所示的幾何體是由以正三角形為底面的直棱柱被平面所截而得. ,的中點(diǎn).

(1)當(dāng)時(shí),求平面與平面的夾角的余弦值;
(2)當(dāng)為何值時(shí),在棱上存在點(diǎn),使平面?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)如圖,在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點(diǎn).

(1)求證:EF ∥平面CB1D1
(2)求證:平面CAA1C1⊥平面CB1D1

查看答案和解析>>

同步練習(xí)冊(cè)答案