考點(diǎn):用空間向量求平面間的夾角,直線(xiàn)與平面平行的判定,直線(xiàn)與平面垂直的性質(zhì)
專(zhuān)題:空間位置關(guān)系與距離,空間角
分析:(Ⅰ)由已知條件推導(dǎo)出PA⊥AC,AB⊥AC,由此能證明AC⊥平面PAB,從而得到AC⊥PB.
(Ⅱ)法1:建立空間直角坐標(biāo)系A(chǔ)-xyz,利用向量法能證明DG∥平面PBC.
法2:取AB中點(diǎn)E,連OE,則點(diǎn)G在OE上.連結(jié)AG并延長(zhǎng)交CB于F,連PF,由已知條件推導(dǎo)出DG∥PF,由此能證明DG∥平面PBC.
(Ⅲ)分別求出平面PBC的一個(gè)法向量和面PAB的一個(gè)法向量,由此利用向量法能求出二面角A-PB-C的余弦值.
解答:
證明:(Ⅰ)因?yàn)镻A⊥平面ABC,AC?平面ABC,
所以PA⊥AC.
又因?yàn)锳B⊥AC,且PA∩AB=A,
所以AC⊥平面PAB.
又因?yàn)镻B?平面PAB,
所以AC⊥PB.…(4分)
(Ⅱ)證法1:因?yàn)镻A⊥平面ABC,所以PA⊥AB,PA⊥AC.
又因?yàn)锳B⊥AC,所以建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz.
設(shè)AC=2a,AB=b,PA=2c,
則A(0,0,0),B(0,b,0),C(2a,0,0),
P(0,0,2c),D(0,0,c),O(a,0,0).
又因?yàn)?span id="gvqnvfo" class="MathJye">
=
(
+
),
所以
G(,,0).
于是
=(,,-c),
=(2a,-b,0),
=(0,b,-2c).
設(shè)平面PBC的一個(gè)法向量
=(x
0,y
0,z
0),則有
,
即
不妨設(shè)z
0=1,則有
y0=,x0=,所以
=(,,1).
因?yàn)?span id="rrzq7j0" class="MathJye">
•
=
•+•+1•(-c)=0,
所以
⊥.又因?yàn)镈G?平面PBC,
所以DG∥平面PBC.…(9分)
證法2:取AB中點(diǎn)E,連OE,則
=(+).
由已知
=(+)可得
=,
則點(diǎn)G在OE上.連結(jié)AG并延長(zhǎng)交CB于F,連PF.
因?yàn)镺,E分別為AC,AB的中點(diǎn),
所以O(shè)E∥BC,即G為AF的中點(diǎn).
又因?yàn)镈為線(xiàn)段PA的中點(diǎn),
所以DG∥PF.
又DG?平面PBC,PF?平面PBC,
所以DG∥平面PBC.…(9分)
(Ⅲ)由(Ⅱ)可知平面PBC的一個(gè)法向量
=(,,1)=(2,2,1).
又因?yàn)锳C⊥面PAB,所以面PAB的一個(gè)法向量是
=(2,0,0).
又cos<
,>=
=
,
由圖可知,二面角A-PB-C為銳角,
所以二面角A-PB-C的余弦值為
.…(14分)
點(diǎn)評(píng):本題考查異面直線(xiàn)垂直的證明,考查直線(xiàn)與平面平行的證明,考查二面角的余弦值的求法,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.