如圖,已知在側(cè)棱垂直于底面三棱柱ABC-A1B1C1中,AC=3,AB=5,BC=4,AA1=4,點D是AB的中點.
(1)求證:AC⊥BC1; 
(2)求證:AC1∥平面CDB1
(3)求三棱錐A1-B1CD的體積.
考點:棱柱、棱錐、棱臺的體積,直線與平面平行的判定
專題:綜合題,空間位置關(guān)系與距離
分析:(1)由勾股定理得AC⊥BC,由CC1⊥面ABC 得到CC1⊥AC,從而得到AC⊥面BCC1,故AC⊥BC1
(2)連接B1C交BC1于點E,則DE為△ABC1的中位線,得到DE∥AC1,從而得到AC1∥面B1CD.
(3)過C作CF⊥AB垂足為F,CF⊥面ABB1A1,面積法求CF,求出三角形DB1A1的面積,代入體積公式進行運算.
解答: (1)證明:在△ABC中,∵AC=3,AB=5,BC=4,
∴△ABC為直角三角形,∴AC⊥BC…(2分)
又∵CC1⊥平面ABC,∴CC1⊥AC,CC1∩BC=C,
∴AC⊥平面BCC1,∴AC⊥BC1.                                             …(5分)
(2)證明:設(shè)B1C與BC1交于點E,則E為BC1的中點,連結(jié)DE,則在△ABC1中,DE∥AC1
又DE?面CDB1,AC1?面CDB1,∴AC1∥平面B1CD.                        …(10分)
(3)解:在△ABC中,過C作CF⊥AB,F(xiàn)為垂足,
∵平面ABB1A1⊥平面ABC,且平面ABB1A1∩平面ABC=AB,∴CF⊥平面ABB1A1,
CF=
AC•BC
AB
=
3×4
5
=
12
5
,
VA1-B1CD=VC-A1DB1,而S△DA1B1=
1
2
A1B1•AA1=5×4×
1
2
=10
,
VA1-B1CD=
1
3
×10×
12
5
=8
.                                                   …(14分)
點評:本題考查證明線線垂直、線面平行的方法,求三棱錐的體積,求點C到面A1B1D的距離是解題的難點.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知△ABC中,AB=BC=AP=1,∠ABC=120°,∠APC=150°.
(1)求三角形APB的面積S;
(2)求sin∠BCP的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙、丙三個工廠同時生產(chǎn)A和B兩種型號的產(chǎn)品,某天的產(chǎn)量如下表(單位:個)
型號甲廠乙廠丙廠
A型2000z3000
B型300045005000
按廠家進行分層抽樣,在該天的產(chǎn)品中抽取100個,其中有甲廠產(chǎn)品25個.
(1)求z的值;
(2)在甲廠生產(chǎn)的產(chǎn)品中用分層抽樣的方法抽取一個容量為5的樣本,從這個樣本中任取2個產(chǎn)品,求至少有1個A型產(chǎn)品的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將一塊邊長為a的正方形鐵皮,剪去四個角(四個全等的正方形),作成一個無蓋的鐵盒,要使其容積最大,剪去的小正方形的邊長為多少?最大容積是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求下列三角函數(shù)式的值:
(1)sin
π
4
cos
19π
6
tan
21π
4
;
(2)
3
sin(-1200°)tan
19π
6
-cos585°tan(-
37π
4
).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx,
(1)求函數(shù)g(x)=f(x+1)-x的最大值;
(2)若不等式f(x)≤ax≤x2+1對?x>0恒成立,求實數(shù)a的取值范圍;
(3)0<a<b,求證f(b)-f(a)>
2a(b-a)
a2+b2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
,
b
的夾角為60°,且|
a
|=2,|
b
|=1,若
c
=2
a
-
b
,
d
=
a
+2
b
,求:
(1)
c
d
; 
(2)|
c
+2
d
|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動圓P與圓F1:(x+3)2+y2=81相切,且與圓F2:(x-3)2+y2=1相內(nèi)切,記圓心P的軌跡為曲線C;設(shè)Q為曲線C上的一個不在x軸上的動點,O為坐標原點,過點F2作OQ的平行線交曲線C于M,N兩個不同的點.
(Ⅰ)求曲線C的方程;
(Ⅱ)試探究|MN|和|OQ|2的比值能否為一個常數(shù)?若能,求出這個常數(shù);若不能,請說明理由;
(Ⅲ)記△QF2M的面積為S1,△OF2N的面積為S2,令S=S1+S2,求S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等腰梯形ABCD中,AB∥CD,AB=2CD=8,AD=BC=5,E是AB的中點,將△ADE與△BEC分別沿邊DE、CE向上折起,使A、B重合于點P,則三棱錐P-DCE的外接球的表面積為
 

查看答案和解析>>

同步練習冊答案