有甲、乙兩口袋,甲袋中有六張卡片,其中一張寫有0,兩張寫有1,三張寫有2;乙袋中有七張卡片,四張寫有0,一張寫有1,兩張寫有2,從甲袋中取一張卡片,乙袋中取兩張卡片.設(shè)取出的三張卡片的數(shù)字乘積的可能值為,其相應(yīng)的概率記為,則的值為_____________.
,從甲袋中取一張1,從乙袋中取兩張2;,或從甲袋中取一張2,從乙袋中取一張1一張2,乘積的值為4,其概率為。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

有一電路如圖,共有1號、2號、3號、4號、5號、6號六個開關(guān),若每個開關(guān)閉合的概率都是,且互相獨(dú)立,求電路被接通的概率?
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為抗擊金融風(fēng)暴,某工貿(mào)系統(tǒng)決定對所屬企業(yè)給予低息貸款的扶持.該系統(tǒng)先根據(jù)相關(guān)評分標(biāo)準(zhǔn)對各個企業(yè)進(jìn)行了評估,并依據(jù)評估得分將這些企業(yè)分別評定為優(yōu)秀、良好、合格、不合格4個等級,然后根據(jù)評估等級分配相應(yīng)的低息貸款金額,其評估標(biāo)準(zhǔn)和貸款金額如下表:
評估得分
[50,60)
[60,70)
[70,80)
[80,90]
評定類型
不合格
合格
良好
優(yōu)秀
貸款金額(萬元)
0
200
400
800
為了更好地掌控貸款總額,該系統(tǒng)隨機(jī)抽查了所屬部分企業(yè)的評估分?jǐn)?shù),得其頻率分布直方圖如下:
(Ⅰ)估計該系統(tǒng)所屬企業(yè)評估得分的中位數(shù);
(Ⅱ)該系統(tǒng)要求各企業(yè)對照評分標(biāo)準(zhǔn)進(jìn)行整改,若整改后優(yōu)秀企業(yè)數(shù)量不變,不合格企業(yè)、合格企業(yè)、良好企業(yè)的數(shù)量依次成等差數(shù)列,系統(tǒng)所屬企業(yè)獲得貸款的均值(即數(shù)學(xué)期望)不低于410萬元,那么整改后不合格企業(yè)占企業(yè)總數(shù)的百分比的最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知盒中有3只螺口與7只卡口燈泡,這些燈泡的外形與功率都相同且燈口向下放著,現(xiàn)需用一只卡口燈泡,電工師傅每次從中任取一只并不放回,則他直到第3次才取得卡口燈泡的概率為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某牧場的10頭牛因誤食瘋牛病毒污染的飼料被感染,已知瘋牛病發(fā)病的概率為0.02.若發(fā)病的牛數(shù)為ξ,則Dξ等于
A.0.2B.0.196C.0.8D.0.812

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(文)(本大題滿分12分)
擲一枚硬幣,正、反兩面出現(xiàn)的概率都是0.5,把這枚硬幣反復(fù)擲8次,這8次中的第n次中,假若正面出現(xiàn),記an=1,若反面出現(xiàn),記an=-1,令Sn=a1+a2+…+an(1≤n≤8),在這種情況下,試求下面的概率:
(1)S2≠0且S8=2的概率;
(2)S4=0且S8=2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲從裝有編號為1,2,3,4,5的卡片的箱子中任意取一張,乙從裝有編號為2,4的卡片的箱子中任意取一張,用分別表示甲.乙取得的卡片上的數(shù)字.(1)求概率);(2)記,求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在1,2,3,4,5,6,7,8這八個數(shù)字中任選三個不同的數(shù),則這三個數(shù)能構(gòu)成等差數(shù)列的概率是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在半徑為3的圓內(nèi)有一內(nèi)接銳角,其中,現(xiàn)向圓內(nèi)拋擲一點(diǎn),則點(diǎn)落在三角形內(nèi)的概率為,則等于(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案