對(duì)實(shí)數(shù)ab,定義運(yùn)算“?:a?b=設(shè)函數(shù)f(x)=(x2-1)?(x-x2),xR.若函數(shù)y=f(x)-c恰有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)c的取值范圍是(  )

(A)(-,-1)(-,0) (B){-1,-}

(C)(-1,-) (D)(-,-1)[-,0)

 

A

【解析】x2-1x-x2-x1,

f(x)=

函數(shù)f(x)的圖象如圖所示,

由圖象知,當(dāng)c<-1-<c<0時(shí),

函數(shù)y=f(x)-c恰有兩個(gè)不同的零點(diǎn).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)十五第二章第十二節(jié)練習(xí)卷(解析版) 題型:選擇題

函數(shù)y=2x3+1的圖象與函數(shù)y=3x2-b的圖象有三個(gè)不相同的交點(diǎn),則實(shí)數(shù)b的取值范圍是(  )

(A)(-2,-1) (B)(-1,0)

(C)(0,1) (D)(1,2)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)十三第二章第十節(jié)練習(xí)卷(解析版) 題型:選擇題

若存在過點(diǎn)(1,0)的直線與曲線y=x3y=ax2+x-9都相切,a等于(  )

(A)-1- (B)-1

(C)-- (D)-7

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)十七第三章第一節(jié)練習(xí)卷(解析版) 題型:選擇題

已知扇形的面積為2cm2,扇形圓心角θ的弧度數(shù)是4,則扇形的周長為(  )

(A)2cm (B)4cm (C)6cm (D)8cm

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)十一第二章第八節(jié)練習(xí)卷(解析版) 題型:填空題

若函數(shù)y=f(x)(xR)滿足f(x+2)=f(x),x[-1,1]時(shí),f(x)=1-x2,函數(shù)g(x)=lg|x|,則函數(shù)y=f(x)y=g(x)的圖象在區(qū)間[-5,5]內(nèi)的交點(diǎn)個(gè)數(shù)為    .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)十一第二章第八節(jié)練習(xí)卷(解析版) 題型:選擇題

函數(shù)f(x)=|x-2|-lnx在定義域內(nèi)零點(diǎn)的個(gè)數(shù)為(  )

(A)0    (B)1    (C)2    (D)3

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)六十第九章第一節(jié)練習(xí)卷(解析版) 題型:填空題

如果執(zhí)行如圖所示的程序框圖,輸入x=-1,n=3,則輸出的數(shù)S=     .

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)六十四第十章第一節(jié)練習(xí)卷(解析版) 題型:選擇題

三張卡片的正反面分別寫有12,34,56,若將三張卡片并列,可得到不同的三位數(shù)(6不能作9)的個(gè)數(shù)為(  )

(A)8 (B)6 (C)14 (D)48

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)六十五第十章第二節(jié)練習(xí)卷(解析版) 題型:填空題

用數(shù)字0,1,2,3,4,5,6組成沒有重復(fù)數(shù)字的四位數(shù),其中個(gè)位、十位和百位上的數(shù)字之和為偶數(shù)的四位數(shù)共有    個(gè)(用數(shù)字作答).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案