如圖,已知斜三棱柱ABC-A1B1C1中,AB=AC,D為BC的中點.
(1)若AA1⊥AD,求證:AD⊥DC1;
(2)求證:A1B∥平面ADC1
考點:直線與平面平行的判定,空間中直線與直線之間的位置關(guān)系
專題:證明題,空間位置關(guān)系與距離
分析:(1)證明AD⊥BC,AD⊥CC1,利用線面垂直的判定定理,可得AD⊥平面BCC1B1,即可證明AD⊥DC1;
(2)連結(jié)A1C,交AC1于點O,連結(jié)OD,則O為A1C的中點,證明OD∥A1B,可得A1B∥平面ADC1
解答: 證明:(1)因為AB=AC,D為BC的中點,所以AD⊥BC.…(2分)
因為AA1⊥AD,AA1∥CC1,所以AD⊥CC1,…(4分)
因為CC1∩BC=C,所以AD⊥平面BCC1B1,…(6分)
因為DC1?平面BCC1B1,所以AD⊥DC1  …(7分)
(2)連結(jié)A1C,交AC1于點O,連結(jié)OD,則O為A1C的中點.
因為D為BC的中點,所以O(shè)D∥A1B  …(9分)
因為OD?平面ADC1,A1B?平面ADC1,…(12分)
所以A1B∥平面ADC1 …(14分)
點評:本題考查直線與平面平行的判定、考查線面垂直的判定定理與性質(zhì),考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于f(x)=3sin(2x+
π
4
)有如下命題:其中正確的判斷是
 

①若f(x1)=f(x2)=0,則x1-x2是π的整數(shù)倍;
②函數(shù)解析式可改為f(x)=3cos(2x-
π
4
);
③函數(shù)圖象關(guān)于x=-
π
8
對稱;
④函數(shù)f(x)是奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2x-1
+a為奇函數(shù),
(1)求定義域和a的值;
(2)求證:f(x)在x∈(0,+∞)上單調(diào)遞減,解不等式f(m+1)+f(-2m+3)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求圓C:x2+y2-4x+6y=0的圓心C到直線l:4x-3y=0的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由不等式
x≤0
y≥0
y-x-3≤0
確定的平面區(qū)域記為Q1,不等式組
x+y≤1
x+y≥-2
確定的平面區(qū)域記為Q2,在Q1中隨機(jī)取一點,則該點恰好在Q2內(nèi)的概率為( 。
A、
1
3
B、
2
3
C、
5
18
D、
13
18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,且PA⊥底面ABCD,PA=2AB,則四棱錐P-ABCD外接球的表面積為( 。
A、24πB、8π
C、6πD、36π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若m>0,點P(m,
5
2
)在雙曲線
x2
4
-
y2
5
=1上,則點P到該雙曲線左焦點的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知數(shù)列{an}滿足a1=1,an+1=
2n+1an
an+2n
 (n∈N*),
(Ⅰ)證明數(shù)列{ 
2n
an
 }是等差數(shù)列;
(Ⅱ)求數(shù)列{an)的通項公式;
(Ⅲ)設(shè)bn=n(n+1)an 求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2x+1,若存在實數(shù)t,使得不等式f(x+t)≤x對任意的x∈[1,m](m>1)恒成立,則實數(shù)m的最大值為
 

查看答案和解析>>

同步練習(xí)冊答案