正方形ABCD與正方形ABEF所在平面相交于AB,在AE、BD上各有一點(diǎn)P、Q,且AP=DQ.求證:PQ∥平面BCE.
考點(diǎn):直線與平面平行的判定
專題:證明題,空間位置關(guān)系與距離
分析:要PQ∥平面BCE,只需證明直線PQ平行平面BCE內(nèi)的直線MN即可.
解答: 證明:作PM∥AB交BE于M,作QN∥AB交BC于N,連接MN.
∵正方形ABCD和正方形ABEF有公共邊AB,∴AE=BD.
又AP=DQ,∴PE=QB,
又PM∥AB∥QN,
PM
AB
=
PE
AE
=
QB
BD
,
QN
DC
=
BQ
BD

PM
AB
=
QN
DC
,
∴PM∥QN,且 PM=QN即四形PMNQ為平行四邊形,
∴PQ∥MN.
又MN?平面BCE,PQ?平面BCE,
∴PQ∥平面BCE.
點(diǎn)評(píng):本題考查直線與平面平行的判定,考查邏輯思維能力,轉(zhuǎn)化思想,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的首項(xiàng)a1=1,a2=p-1(p為常數(shù),|p|<1,p≠0),當(dāng)n≥2時(shí),{an}是以p為公比的等比數(shù)列,{an}的前n項(xiàng)和Sn=a1+a2+…+an(n≥1)
(1)試問S1,S2,…,Sn能否構(gòu)成等差數(shù)列或等比數(shù)列?
(2)設(shè)Wn=a1S1+a2S2+…+anSn,證明
lim
n→∞
Wn
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知 斜率為
4
5
的直線?與橢圓
x2
a2
+
y2
b2
=1(a>b>0),相交于A,B,兩點(diǎn),若AB的中點(diǎn)P的坐標(biāo)為(
-5
2
,2),求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

假設(shè)關(guān)于某設(shè)備的使用年限x和所支出的維修費(fèi)用y(萬(wàn)元),有如下的統(tǒng)計(jì)資料:
使用年限x23456
維修費(fèi)用y2.23.85.56.57.0
若由資料知道y對(duì)x呈線性相關(guān)關(guān)系.附:b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
,a=
.
y
-b
.
x

試求:
(1)線性回歸方程
y
=a+bx的回歸系數(shù).
(2)估計(jì)使用年限為10年時(shí),維修費(fèi)用是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn=
1
(3n-2)•3n
,求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察(1)sin230°+cos260°+sin30°cos60°=
3
4
;
    (2)sin210°+cos240°+sin10°cos40°=
3
4

    (3)sin26°+cos236°+sin6°cos36°=
3
4

請(qǐng)你根據(jù)上述規(guī)律,提出一個(gè)猜想,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ex-ax-1.
(1)求f(x)的單調(diào)增區(qū)間;
(2)若f(x)在(-∞,0]上單調(diào)遞減,在[2,+∞)上單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)△ABC的內(nèi)角A、B、C的對(duì)邊長(zhǎng)分別為a、b、c,cos(A-C)+cosB=
3
2

(1)B=60°,判斷三角形形狀;       
(2)b2=ac,求角B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sinx•cosx+sin2x.
(1)求函數(shù)f(x)的最小正周期及最小值;
(2)在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若f(A)=
3
2
,a=2,b+c=3,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案